
The ABC’s of AutoLISP by George Omura

1

Copyright © 2001 George Omura,,World rights reserved

Introduction
One of AutoCAD's greatest assets is its adaptability. You can control just about every aspect of
AutoCAD's operations from the appearance of its drawing editor to its variety of menus. A key
element of this adaptability is its built-in programming language, AutoLISP. With AutoLISP,
you can virtually write your own commands or redefine others.

You can think of AutoLISP as a very sophisticated macro-building facility. (Simple macros are
like scripts that automate repetitive keystrokes.) You don't need to be a programmer to use
AutoLISP. In fact, AutoLISP is designed so that everyday users of AutoCAD can start to use it
after a minimum of training. This book makes AutoLISP accessible to AutoCAD users who are
looking for a way to enhance and extend their use of AutoCAD.

The ABC’s of AutoLISP by George Omura

2

Copyright © 2001 George Omura,,World rights reserved

Who should read this book
This book introduces nonprogrammers to the use of AutoLISP. If you are an intermediate level
AutoCAD user, interested in learning about this powerful tool, then this is the book for you. If
you are just beginning to learn AutoCAD, then you should probably become a bit more familiar
with AutoCAD before attempting to learn AutoLISP. This book assumes that you have at least
an intermediate level of expertise with AutoCAD and are acquainted with simple Windows
operations.

How This Book Is Organized
The book is divided into 11 chapters. The first three chapters give you an introduction to
programming in AutoLISP. The Chapter 1 introduces you to AutoLISP by showing you how to
use it directly from the AutoCAD command prompt. The Chapter 2 shows you how to create and
save programs in a file. Chapter 3 discusses ways of organizing your programming projects and
how to manage your computers' memory.

The next four chapters show you how to use AutoLISP to do a variety of editing tasks. Chapter 4
discusses the functions that allow you to ask the user for input. Chapter 5 explains how to build
decision-making capabilities into your programs. Chapter 6 shows you how to deal with
geometric problems using AutoCAD. Chapter 7 discusses the manipulation of text.

The last four chapters show you how AutoCAD and AutoLISP interact. In Chapter 8, you will
see how you can control many facets of AutoCAD through AutoLISP. Chapter 9 delves into
lists, a fundamental component of all AutoLISP programs. Chapter 10 shows you ways of
modifying AutoCAD objects by directly accessing the AutoCAD drawing database. And finally,
Chapter 11 looks at ways to dig deeper into the drawing database to get information on complex
drawing objects like polylines and block attributes.

In addition, five appendices are included as reference material to the book. In the original version
of this book, these appendices contained the resources indicated by their title. In this electronic
version, these appendices offer directions on how to find information in the AutoCAD help
system. The first three show you how to find information on the AutoCAD menu structure,
AutoLISP error messages, and AutoCAD group codes. The fourth appendix describes how to
find informaton on the standard AutoCAD dimension variables and system variables. The fifth
appendix describes how to find informaton on the Table group codes.

The ABC’s of AutoLISP by George Omura

3

Copyright © 2001 George Omura,,World rights reserved

How to Use This Book
Each chapter offers exercises and sample programs that demonstrate some general concept
regarding AutoLISP. Through these exercises, the book shows you how programs develop from
ideas into finished, running programs. Also, the information you learn in one chapter will build
on what you learned in the previous chapter. This way, your knowledge of AutoLISP will be
integrated and cohesive, rather than fragmented. For this reason, the best way to use this book is
to read each chapter in order and do all of the exercises. Since the topics are oriented toward
accomplishing tasks rather than simply focusing on individual functions, you will have a good
grasp of how to use AutoLISP in real world situations by the end of this book.

Where to Find the LISP Programs
As you read the chapters and do the exercise, you will be asked to enter program code into a file.
If you are in a hurry, you can cut and paste the code directly from the chapter you are reading.
This will save a good deal of time, but make sure you study the code that you cut and paste.

 This book was originally published in 1990 by Sybex Inc. It has been reproduced here in an electronic format by
the Author for the benefit of Mastering AutoCAD readers everywhere. Enjoy....

Copyright © 2001 George Omura,,World rights reserved. No part of this publication may
be stored in a retieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without the prior agreement
and written permission of the author.

The ABC’s of AutoLISP by George Omura

4

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoLISP by George Omura

5

Copyright © 2001 George Omura,,World rights reserved

Chapter 1: Introducing AutoLISP
Featuring

Understanding the AutoLISP Interpreter and Evaluation

Expressions and Arguments

Variables and Data Types

Manipulating Lists with Functions

Get Functions

If you have never programmed a computer before, you may think that learning AutoLISP will be difficult. Actually,
when you use a program such as AutoCAD, you are, in a sense, programming your computer to create and
manipulate a database. As you become more familiar with AutoCAD, you may begin to explore the creation of
linetypes and hatch patterns, for example. Or you may customize your menu to include your own specialized
functions and macros. (Macros are like scripts that the computer follows to perform a predetermined sequence of
commands.) At this level, you are delving deeper into the workings of AutoCAD and at the same time programming
your computer in a more traditional sense.

Using AutoLISP is really just extending your knowledge and use of AutoCAD. In fact, once you learn the basic
syntax of AutoLISP, you need only to familiarize yourself with AutoLISP's built-in functions to start writing useful
programs. (AutoLISP's syntax is the standard order of elements in its expressions.) You might look at AutoLISP
functions as an extension to AutoCAD's library of commands. The more functions you are familiar with, the better
equipped you are for using the program effectively.

AutoLISP closely resembles Common LISP, the most recent version of the oldest artificial intelligence
programming language still in use today. AutoLISP is essentially a pared down version of Common LISP with some
additional features unique to AutoCAD. Many consider LISP to be one of the easiest programming languages to
learn, partly because of its simple syntax. Since AutoLISP is a subset of common LISP, it is that much easier to
learn.

In this chapter, you will become familiar with some of the basic elements of AutoLISP by using AutoLISP directly
from the AutoCAD command prompt to perform a few simple operations. While doing this, you will be introduced
to some of the concepts you will need to know to develop your own AutoLISP applications.

Understanding the Interpreter and Evaluation
AutoLISP is accessed through the AutoLISP interpreter. When you enter data at the AutoCAD command prompt,
the interpreter first reads it to determine if the data is an AutoLISP formula. If the data turns out to be intended for
AutoLISP, then AutoLISP evaluates it, and returns an answer to the screen. This process of reading the command
prompt, evaluating the data, then printing to the screen, occurs whenever anything is entered at the command prompt

The ABC’s of AutoLISP by George Omura

6

Copyright © 2001 George Omura,,World rights reserved

and is an important part of how AutoLISP functions.

In some ways, the interpreter is like a hand-held calculator. Just as with a calculator, the information you wish to
have AutoLISP evaluate must follow a certain order. For example, the formula 0.618 plus 1 must be entered as
follows:

(+ 0.618 1)

Try entering the above formula at the command prompt. AutoLISP evaluates the formula (+ 0.618 1) and returns the
answer, 1.618, displaying it on the prompt line.

This structure-+ 0.618 1-enclosed by parentheses, is called an expression and it is the basic structure for all
AutoLISP programs. Everything intended for the AutoLISP interpreter, from the simplest expression to the most
complex program, must be written with this structure. The result returned from evaluating an expression is called the
value of the expression.

The Components of an Expression
An AutoLISP expression must include an operator of some sort followed by the items to be operated on. An
operator is an instruction to take some specific action such as adding two numbers together or dividing one number
by another. Examples of mathematical operators include the plus sign (+)for addition and forward slash (/) for
division.

We will often refer to the operator as a function and the items to be operated on as the arguments to the function or
simply, the arguments. So, in the expression (+ 0.618 1), the + is the function and the 0.618 and 1 are the arguments.
All AutoLISP expressions, no matter what size, follow this structure and are enclosed by parentheses.

Parentheses are important elements of an expression. All parentheses must also be balanced, that is, for each left
parenthesis, there must be a right parenthesis. If you enter an unbalanced expression into the AutoLISP interpreter,
you get the following prompt:

((_>

where the number of parentheses to the left is the number of parentheses required to complete the expression. If you
see this prompt, you must enter the number of closing parentheses indicated in order to return to the command
prompt. In this example, you would need to enter two right parentheses to complete the expression.

Double quotation marks enclosing text must also be carefully balanced. If an AutoLISP expression is unbalanced, it
can be quite difficult to complete it and exit AutoLISP. Figure 1.1 shows the components of the expression you just
entered.

The ABC’s of AutoLISP by George Omura

7

Copyright © 2001 George Omura,,World rights reserved

Figure1.1: The parts of and AutoLISP expression

Note that spaces are used to separate the functions and arguments of the expression. Spaces are not required between
the parentheses and the elements of the expression though you can add spaces to help improve the readability of
expressions when they become complex. However, it is very important to maintain spaces between the elements of
the expression. Spaces help both you and AutoLISP keep track of where one element ends and another begins.

Using Arguments and Expressions
AutoLISP evaluates everything, not just expressions, but the arguments in expressions as well. This means that in
the above example, AutoLISP evaluates the numbers 0.618 and 1 before it applies these numbers to the plus
operator. In AutoLISP, numbers evaluate to themselves. This means that when AutoLISP evaluates the number
0.618, 0.618 is returned unchanged. Since AutoLISP evaluates all arguments, expressions can also be used as
arguments to a function.

For example, enter the following at the command prompt:

(/ 1 (+ 0.618 1))

In this example, the divide function (/) is given two arguments-number 1 and an expression (+ 0.618 1). This type of
expression is called a complex or nested expression because one expression is contained within another. So in our
example, AutoLISP first evaluates the arguments of the expression, which are the expression (+ 0.618 1) and the
number 1. It then applies the resulting value of the expression and the number 1 to the divide function and returns
the answer of 0.618047 (see figure 1.2).

The ABC’s of AutoLISP by George Omura

8

Copyright © 2001 George Omura,,World rights reserved

Figure 1.2: Evaluation of a nested expression

Using Variables
Another calculator-like capability of the interpreter is its ability to remember values. You probably have a calculator
that has some memory. This capability allows you to store the value of an equation for future use. In a similar way,
you can store values using variables.

A variable is like a container that holds a value. That value can change in the course of a program's operation. A
simple analogy to this is the title of a government position. The position of president could be thought of as a
variable. This variable can be assigned a value, such as Ronald Reagan or Bill Clinton.

Understanding Data Types
Variables can take on several types of values or data types. Here is what some of these data types look like in
AutoLISP.

The ABC’s of AutoLISP by George Omura

9

Copyright © 2001 George Omura,,World rights reserved

DATA TYPE EXAMPLE

Integer 24

Real Number 0.618

String ``20 Feet 6 Inches''

List (4.5021 6.3011 0.0)

File Descriptor <File: a620>

Object Name <Object name: 60000014c>

Selection Set <Selection set: 1>

Symbols Point1

Subrs Setq

By separating data into types, the interpreter is better able to determine precisely how to evaluate the data and keep
programs running quickly. Also, a computer stores different types of data differently, and so data types help
AutoLISP to manage its memory more efficiently. Finally, data types help keep your programming efforts clear by
forcing you to think of data as having certain characteristics. The following descriptions give you an idea of what
each of these data types are.

Integers and Real Numbers
Integers are whole numbers from -32768 to + 32767. The value of an expression containing only integers is always
an integer. For example, the value of the expression
(/ 25 2) is 12. The decimal value is dropped from the resulting value.

Real numbers are numbers that include a decimal value. If the same expression above is written using real numbers,
(/ 25.0 2.0), its value will be expressed as the real number 12.5. Integers have a black and white quality about them.
24 will always equal 24. Real numbers (sometimes referred to as reals), on the other hand can be a bit less definite.
For example, two real values, 24.001245781 and 24.001245782 are nearly identical but are not equal. If you were to
drop the last decimal place in both these numbers, then they would be equal values. This definitive quality of
integers makes them more suited to certain types of uses, like counting, while real numbers are better suited to
situations that require exacting values such as coordinate values and angles. Also, computations performed on
integers are faster than those performed on reals.

You may have noticed that in our previous examples, the real number 0.618 is preceded by a zero and not written as
.618. In AutoLISP, real numbers with values between 1.0 and 0.0 must begin with zero. If you do not follow this
rule, you will get an error message. Enter the following at the command prompt:

 (+ .618 1)

The ABC’s of AutoLISP by George Omura

10

Copyright © 2001 George Omura,,World rights reserved

 Though the above expression looks perfectly normal, the following error message appears:

 error: invalid dotted pair

Most beginners and even some experienced AutoLISP users might be completely baffled by the error message. We
will look at what dotted pairs are later in this book but for now, just keep in mind that real values between 1.0 and
0.0 must be entered with a 0 preceding the decimal point.

Strings
The term string refers to text. Strings are often used as prompts in AutoLISP expressions but they can also be
manipulated using AutoLISP. For example, using the Strcat AutoLISP function, you could combine two strings,
"thirty seven feet" and "six inches", into one string "thirty seven feet six inches". Try entering this:

(strcat "thirty seven feet " "six inches")

The following is returned:

"thirty seven feet six inches"

Lists
Lists are data elements enclosed in parentheses. They are the basic data structure in AutoLISP. A list can be made up
of any number of integers, real numbers, strings, and even other lists.

There are two types of lists. Those intended for evaluation and those intended as repositories for data. When a list
contains a function as its first element, we can generally assume that it is an expression intended for evaluation.
Such a list is often referred to as a form. An example of a list as a repository of data is a list that represents a
coordinate location. For example, the list

 (1.2 2.3 4.4)

 contains three elements, an X, Y, and Z coordinate. The first element, 1.2, is the x coordinate, the second element,
2.3 is the y coordinate, and the third element, 4.4, is the z coordinate.

File Descriptors
AutoLISP allows you to read and write text files to disk. File descriptors are used in a program to access files that
have been opened for processing. You might think of a file descriptor as a variable representing the file in question.
We will discuss this data type in more detail in Chapter 7.

Object Names
Every object in an AutoCAD drawing has a name. The name is an alphanumeric code unique to that object. This
name can be accessed by AutoLISP and used as a means of selecting individual objects for processing. Object
names are provided by AutoCAD and are not user definable. Also Object names can change from one drawing
session to another.

The ABC’s of AutoLISP by George Omura

11

Copyright © 2001 George Omura,,World rights reserved

Selection Sets
Just as you can define a group of objects for processing using the AutoCAD Select command, you can also assign a
group of objects, or a selection set, to a variable in AutoLISP for processing. Selection sets are given names by
AutoCAD.

Symbols
AutoLISP treats everything as data to be evaluated. Therefore, symbols, or names given to variables, are also data
types. Symbols are usually text, but they can also contain numbers like Point1 or dx2. A symbol must, however,
start with a letter.

Subrs
Subrs are the built-in functions offered by AutoLISP. These functions perform tasks ranging from standard math
operations such as addition and subtraction, to other more complex operations such as obtaining information from
the drawing database about a specific object.

Atoms
There are really two classes of data, lists and atoms. You have already seen an example of a list. An atom is an
element that cannot be taken apart into other elements. For example, a coordinate list can be "disassembled" into
three numbers, the x value, the y value, and the z value, but the x, y and z values cannot be taken apart any further.
In a coordinate list, the x, y, and z values are atoms. Symbols are also atoms because they are treated as single
objects. So, in general, atoms are either numbers or symbols.

Assigning Values to Variables with Setq
Variables are assigned values through the use of the Setq function. As you have seen, a function can be a simple
math operator such as plus or divide. A function can also consist of a set of complex instructions to perform more
than one activity, like a small program.

The Setq function tells AutoLISP to assign a value to a variable. For example, Try the following exercise to assign
the value 1.618 to the variable named Golden:

1. Enter the following at the command prompt:

(setq golden 1.618)

You can now obtain the value of a variable by preceding the variable name by an exclamation point. Now
check the value of Golden.

2. Enter

!golden

The ABC’s of AutoLISP by George Omura

12

Copyright © 2001 George Omura,,World rights reserved

The value 1.618 is returned. You might think of the exclamation point as another way of saying "Display
the contents of."

Setq will assign a value to a variable even if the variable already has a value assigned to it. See what
happens when Golden is assigned a new value.

3. Enter the following:

(setq golden 0.618)

Golden is reassigned the value 0.618 and the old value, 1.618, is discarded. You can even reassign a value to a
variable by using that variable as part of the new value as in the following expression

(setq golden (+ golden 1))

In this example, Golden is assigned a new value by adding 1 to its current value.

Preventing Evaluation of Arguments
But something doesn't seem quite right in the above example. Earlier, we said that AutoLISP evaluates the
Arguments in an expression before it applies the arguments to the function. In the above example, we might expect
AutoLISP to evaluate the variable Golden before it is applied to the Setq function. Since Golden is a variable whose
value is 0.618, it would evaluate to 0.618. AutoLISP should then try to set 1.618 equal to 0.618, which is
impossible. The value returned by the argument (+ golden 1) cannot be assigned to another number (see Figure 1.3).

Figure 1.3: The expected outcome of setq

The ABC’s of AutoLISP by George Omura

13

Copyright © 2001 George Omura,,World rights reserved

Here's why the above example works. Setq function is a special function that is a combination of two other
functions, Set and Quote (hence the name Setq). As with Setq, the function Set assigns the value of the second
argument to the value of the first argument. The Quote function provides a means of preventing the evaluation of an
argument. So, both Setq and Set Quote prevent the evaluation of the first argument, which in the above example is
the variable Golden.

You could write the above example as

(set quote golden (+ golden 1))

and get the same answer. Or you could abbreviate the Quote function to an apostrophe, as in the following:

(set 'golden (+ golden 1))

and get the same answer. Figure 1.4 shows what happens when you use Set Quote. Any of these three forms work,
but since Setq is the most concise, it is the preferred form.

Figure 1.4: The Quote function prevents evaluation of an argument

To further illustrate the use of Quote, look at the following expression:

 (setvar "snapunit" (12 12))

 The function in this expression is Setvar. Setvar performs the same function as the AutoCAD setvar command-it
changes the settings for system variables. Setvar accepts as its arguments a string value giving the name of the

The ABC’s of AutoLISP by George Omura

14

Copyright © 2001 George Omura,,World rights reserved

setting to change ("snapunit") and a value representing the new settings (12 12). Here we are attempting to use
Setvar to change the snap distance setting to 12 by 12.

Remember that AutoLISP evaluates each argument before it is passed to the function. As with numbers, Strings
evaluate to themselves, so the string "snapunit" evaluates to "snapunit". But AutoLISP will also try to evaluate the
list (12 12). AutoLISP always tries to evaluate lists as if they are expressions. As you saw earlier, the first element in
an expression must be a function. Since the first element of the list (12 12) is not a function, AutoLISP will return an
error message (see figure 1.5).

Figure 1.5: An error using Setvar

In this situation, we do not want this list (12 12) to be evaluated. We want it to be read "as is". To do this, we must
add the Quote function as in the following:

 (setvar "snapunit" '(12 12))

 Now AutoLISP will not try to evaluate (12 12), and Setvar will apply the list to the snapunit system variable setting.

Quote provides a means to prevent evaluations when they are not desirable. Quote is most often used in situations
where a list must be used as an argument to a function. Remember that there are two types of lists, those intended
for evaluation and those used to store data. The list (12, 12) stores data, the width and height of the Snap distance.
Because (12 12) does not have a function as its first element, it cannot be evaluated. Since AutoLISP blindly
evaluates everything, Quote is needed to tell AutoLISP not to evaluate (12 12).

Applying Variables
The variable Golden can now be used within an AutoCAD command to enter a value at a prompt, or within another
function to obtain other results. To see how this works, you'll assign the value 25.4 to a variable called Mill.

1. Enter

(setq mill 25.4)

The ABC’s of AutoLISP by George Omura

15

Copyright © 2001 George Omura,,World rights reserved

at the command prompt.

Now find the result of dividing Mill by Golden.

2. Enter

(/ mill golden)

This returns the value 15.698393.

Now assign this value to yet another variable.

3. Enter

 (setq B (/ mill golden))

 Now you have three variables, Golden, Mill, and B, which are all assigned values that you can later retrieve, either
within an AutoCAD command by entering an exclamation point followed by the variable, or as an argument within
an expression.

Our examples so far have shown numbers being manipulated, but text can also be manipulated in a similar way.
Variables can be assigned text strings that can later be used to enter values in commands that require text input.
Strings can also be joined together or concatenated to form new strings. Strings and numeric values cannot be
evaluated together, however. This may seem like a simple statement but if you do not consider it carefully, it can
lead to confusion. For example, it is possible to assign the number 1 to a variable as a text string by entering

 (setq text1 "1'')

 Later, if you try to add this string variable to an integer or real number, AutoCAD will return an error message.

The examples used Setq and the addition and division functions. These are three functions out of many available to
you. All the usual math functions are available, plus many other functions used to test and manipulate variables.
Table 1.1 shows some of the math functions available.

The ABC’s of AutoLISP by George Omura

16

Copyright © 2001 George Omura,,World rights reserved

Table 1.1: A partial list of AutoLISP functions

MATH FUNCTIONS THAT ACCEPT MULTIPLE ARGUMENTS

(+ number number ...) add

(- number number ...) subtract

(* number number ...) multiply

(/ number number ...) divide

(max number number ...) find largest of numbers given

(min number number ...) find smallest of numbers given

(rem number number ...) find the remainder of numbers

MATH FUNCTIONS THAT ACCEPT SINGLE ARGUMENTS

(1+ number) add 1

(1© number) subtract 1

(abs number) find the absolute value

(exp nth) e raised to the nth power

(expt number nth) number raised to the nth power

(fix real) convert real to integer

(float integer) convert integer to real

(gcd integer integer) find greatest common denominator

(log number) find natural log of number

(sqrt number) find square root of number

The ABC’s of AutoLISP by George Omura

17

Copyright © 2001 George Omura,,World rights reserved

FUNCTIONS FOR BINARY OPERATIONS

(~ integer) find logical bitwise NOT of integer

(logand int. int. ...) find logical bitwise AND of
integers

(logior int. int. ...) find logical bitwise OR of integers

(lsh int. bits) find logical bitwise shift of int.by bits

Since AutoLISP will perform mathematical calculations, you can use it as a calculator while you are drawing. For
example, if you need to convert a distance of 132 feet 6 inches to inches, you could enter

 (setq inch1 (+ 6 (* 132 12)))

at the command prompt. The result of this expression is returned as 1590. The asterisk is the symbol for the
multiplication function. The value 1590 is assigned to the variable Inch1, which can later be used as input to
prompts that accept numeric values. This is a very simple but useful application of AutoLISP. In the next section,
you will explore some of its more complex uses.

Accessing Single Elements of a List
When you draw, you are actually specifying points on the drawing area in coordinates. Because a coordinate is a
group of values rather than a single value, it must be handled as a list in AutoLISP. You must use special functions
to access single elements of a list. Two of these functions are Car and Cadr. The following example illustrates their
use.

Suppose you want to store two point locations as variables called Pt1 and Pt2.

1. Enter the following two lines the command Prompt:

(setq pt1 (list 5 6))
(setq pt2 (list 10 12))

The List function in these expressions combines the arguments to form a list. (You can see this in Figure
1.6).

The ABC’s of AutoLISP by George Omura

18

Copyright © 2001 George Omura,,World rights reserved

Figure 1.6: The list function.

These lists are assigned to the variable Pt1 and Pt2. As we have just seen, variables accept not only single
objects as their value but also lists. In fact, variables can accept any data type as their value, even other symbols
representing other variables and expressions.

2. To see the new value for pt1, enter the following:

!pt1

The list (5 6) appears.

Now suppose you want to get only the x coordinate value from this example.

3. Enter:

(car pt1)

The value 5 appears.

The ABC’s of AutoLISP by George Omura

19

Copyright © 2001 George Omura,,World rights reserved

4. To get the y value, enter:

(cadr pt1)

which returns the value 6. These values can in turn be assigned to variables, as in the line

(setq x (car pt1))

Figure 1.7 may help you visualize what Car and Cadr are doing.

Figure 1.7: Car and Cadr of pt1

By using the List function, you can construct a point variable using x and y components of other point
variables. For example, you may want to combine the y value of the variable Pt1 with the x value of a point
variable Pt2.

5. Enter the following:

The ABC’s of AutoLISP by George Omura

20

Copyright © 2001 George Omura,,World rights reserved

(list (car pt2) (cadr pt1))

You get the list (10 6) (see figure 1.8).

Figure 1.8: Deriving a new list from pt1 and pt2

These lists can be used to enter values during any AutoCAD command that prompts for points.

Actually, we have misled you slightly. The two primary functions for accessing elements of a list are CAR and
CDR (pronounced could-er). You know that Car extracts the first element of a list. CDR, on the other hand,
returns the value of a list with its first element removed.

6. Enter the following at the command prompt:

(cdr '(A B C))

The list (B C) is returned (see figure 1.9).

The ABC’s of AutoLISP by George Omura

21

Copyright © 2001 George Omura,,World rights reserved

Figure 1.9: Using Cdr to remove the first element of a list.

When CDR is applied to the list (A B C) you get (B C) which is the equal to the list (A B C) with the first
element, A, removed. Notice that in the above example, the list (A B C) was quoted. If the quote were left out,
AutoLISP would try to evaluate (A B C). Remember that AutoLISP expect the first element of a list to be a
function. Since A is variable and not a function, you would get the error message:

error: null function
(A B C)

Now try using CDR with the variable pt1.

7. Enter

(cdr pt1)

The list (6) is returned.

Remember that anything within a pair of parentheses is considered a list, even () is considered a list of zero
elements. Since the value returned by CDR is a list, it cannot be used where a number is expected. Try replacing
the CADR in the earlier example with a CDR:

8. Enter:

(list (car pt2) (cdr pt1))
(10 (6))

You get a list of 2 elements, 10 and (6) (see figure 1.10). Though this is a perfectly legal list, it cannot be used

The ABC’s of AutoLISP by George Omura

22

Copyright © 2001 George Omura,,World rights reserved

as a coordinate list.

Figure 1.10: Using Car and Cdr together

So what exactly is CADR then. CADR is the contraction of CAR and CDR. You now know that CDR returns a list
with its first element removed and that CAR returns the first element of a list. So to get 6 from the list held by the
variable pt1, you apply CDR to pt1 to get (6) the apply car to (6) as in the following example:

(car (cdr pt1))
6

This CAR-CDR combination is abbreviated to CADR.

(cadr (pt1))
6

Figure 1.11 shows graphically how this works. You can combine CAR and CDR in a variety of ways to break down
nested lists. Figure 1.12 shows some examples of other CAR and CDR contractions.

The ABC’s of AutoLISP by George Omura

23

Copyright © 2001 George Omura,,World rights reserved

Figure 1.11: How CADR works

The ABC’s of AutoLISP by George Omura

24

Copyright © 2001 George Omura,,World rights reserved

Figure 1.12: The CAR and CDR functions combined to extract elements of nested lists

The ABC’s of AutoLISP by George Omura

25

Copyright © 2001 George Omura,,World rights reserved

Functions for Assigning Values to Variables
So far, you have been entering everything from the keyboard. However, you will most often want to bet information
from the drawing area of the AutoCAD screen. AutoLISP offers a set of functions just for this purpose. These
functions are characterized by their GET prefix. Table 1.2 shows a list of these Get functions along with a brief
description.

Table 1.2: Functions that pause to allow input

FUNCTION DESCRIPTION

Getpoint Allows key or mouse entry of point values. This always
returns values as lists of coordinate values.

Getcorner Allows selection of a point by using a window. this
function requires a base point value defining the first
corner of the window. The window appears, allowing
you to select the opposite corner.

Getorient Allows key or mouse entry of angles based on Units
command setting for angles. Returns values in radians.

Getangle Allows key or mouse entry of angles based on the
standard AutoCAD compass orientation of angles.
Returns values in radians.

Getdist Allows key or mouse entry of distances. This always
returns values as real numbers regardless of the unit
format in use.

 To see how one of these functions works, try the following exercise.

1. Turn your snap mode on by pressing the F9 function key.

2. Turn on the dynamic coordinate readout by pressing the F6 function key.

3. Enter the following at the command prompt:

(setq pt1 (getpoint))

This expression blanks the command line and waits until you enter a point. Just as with any standard
AutoCAD command that expects point input, you can enter a relative or absolute point value through the
keyboard or pick a point on the drawing area using the cursor. The coordinate of the point you pick will
become the value assigned to the variable Pt1 in the form of a list.

4. Move your cursor until the coordinate readout lists the coordinate 4,5 then pick that point.

The ABC’s of AutoLISP by George Omura

26

Copyright © 2001 George Omura,,World rights reserved

5. Check the value of pt1 by entering the following:

!pt1

The value (4.0 5.0 0.0) is returned and the command prompt appears once again

Note that a Z coordinate value of 0.0 was added and that all the elements of the coordinate list are reals.

Adding Prompts
All these Get functions allow you to create a prompt by following the function with the prompt enclosed by
quotation marks. The following demonstrates the use of prompts in conjunction with these functions.

1. Enter the following expression:

(setq pt1 (getpoint ``Pick the first point:''))

The following prompt appears:

Pick the first point:

2. Move your cursor until the coordinate readout reads 3,4 then pick that point.

The Get functions allow you to specify a point from which the angle, distance, or point is to be measured.

3. Enter the following:

(setq pt2 (getcorner pt1 ``Pick the opposite corner:''))

the following prompt appears:

Pick the opposite corner:

Pt1 is the point variable that holds the coordinate for the last point you picked. A window appears from the
coordinate defined by Pt1.

4. Move the cursor until the coordinate readout reads 6,7 then pick that point.

You can also enter a relative coordinate through the keyboard in the unit system currently used in your drawing.

The ABC’s of AutoLISP by George Omura

27

Copyright © 2001 George Omura,,World rights reserved

Getangle and Getdist prompt you for two points if a point variable is not provided. Getcorner always requires a point
variable (see Figure 1.13).

Figure 1.13: The Getcorner function as it appears on the drawing area

By using the Getpoint and getcorner functions, you can easily store point and angle values as variables.
You can then refer to a stored point by entering its variable in response to a command prompt that accepts
point input.

5. Issue the line command and at the From point prompt, enter:

!pt1

A rubber-banding line appears from the point previously defined as pt1 just as if you had selected that point
manually.

6. Now enter the following:

!pt2

A line is drawn from the point stored by pt1 to the point stored by pt2.

The ABC’s of AutoLISP by George Omura

28

Copyright © 2001 George Omura,,World rights reserved

Conclusion
So far, you have been introduced to the AutoLISP interpreter and to some of the terms used and a few of the
function available in AutoLISP. You have also been introduced to six basic rules key to the use of AutoLISP. In
summary, these rules are:

• The AutoLISP Expression is the fundamental structure of all AutoLISP programs.

• All AutoLISP expressions begin and end with parentheses with the first element of the expression being an
operator or function followed by the arguments to the operator.

• All parentheses and double quotation marks enclosing strings must be balanced within an expression.

• AutoLISP evaluates everything. When it evaluates expressions, it does so by evaluating the arguments
before applying the arguments to the function.

• Numbers and strings evaluate to themselves.

• Variables evaluate to the last value assigned to them.

You have seen how you can store values as variables and how you can use AutoLISP to perform math calculations.
You may want to apply this knowledge to your everyday use of AutoCAD. Doing so will help you become more
comfortable with AutoLISP and will give you further confidence to proceed with more complex programs.

You have also looked at how lists can be broken down and put together through the CAR, CDR, Quote and List
functions. List manipulation can be a bit harry so take some time to thoroughly understand these functions. You may
want to practice building lists just to get a better feel for this unusual data type.

In Chapter 2, you will learn how to create an AutoLISP program. You will also learn how to permanently store
AutoLISP functions so that they can be later retrieved during subsequent editing sessions.

The ABC’s of AutoLISP by George Omura

29

Copyright © 2001 George Omura,,World rights reserved

 Chapter 2: Storing and Running Programs
Introduction

Creating an AutoLISP Program

What You need

Creating an AutoLISP File

Loading an AutoLISP File

Running a loaded Program

Understanding How a program Works

Using AutoCAD Commands in a Program

How to Create a Program

Local and Global Variables

Automatic Loading of Programs

Managing large Acad.LSP Files

Using AutoLISP in a Menu

 Using Script files

Conclusion

Introduction
In the last chapter, you learned how to use the interpreter and in the process, you were introduced to some of the
basic concepts of AutoLISP. You can now enter simple expressions into the interpreter to perform specific tasks.
But once you exit the drawing editor, all of your work in AutoLISP is lost. AutoLISP would be difficult to use if
there weren't some way of storing your functions for later retrieval. It would be especially difficult to create complex
programs if you could only load them into the interpreter from the keyboard one line at a time. In this chapter, you
will explore the development of programs through the use of AutoLISP files and in the process, review the
AutoLISP concepts you learned in chapter 1.

Creating an AutoLISP Program
Instead of entering all of your functions directly into the interpreter, you have the option of writing them in a text
file outside of AutoCAD. Later, when you want to use your function, you can quickly load and run them using the
AutoLISP Load function. Functions you store and load in this way will act just as if you entered them into the
interpreter manually. Since you can easily edit and review your functions in a word processor, you can begin to
develop larger, more complex functions and programs.

What you Need
Before you can create an AutoLISP file, you need a word processor that will read and write ASCII files. ASCII
stands for American Standard Code for Information Interchange. As the name implies, ASCII format was created to
allow different computing systems to exchange data with each other. Most word processors allow you to generate
files in this format. In this and the preceding chapters, whenever we say to open or create an AutoLISP file, we are
asking you to open an ASCII file using your word processor. You can use the Windows Notepad to do most of your

The ABC’s of AutoLISP by George Omura

30

Copyright © 2001 George Omura,,World rights reserved

AutoLISP work. Most other word processors will also save and read ASCII files, usually called TXT files in
Windows.

Creating an AutoLISP File
The most common way to store AutoLISP programs is to save it as a text file with the extension .lsp. This file
should contain the same information you would enter through the keyboard while using the interpreter interactively.
We suggest that you create a directory called /LSP in which you can store all of your AutoLISP programs. By
keeping your programs together in one directory, you are able to manage them as their numbers grow.

The program listed in figure 2.1 combines many of the concepts you have learned in chapter one into a single
AutoLISP program. You will create a file containing this program then load and run the program into AutoCAD to
see how it works. We use the term program to describe a function that performs a task when entered at the
AutoCAD command prompt, even though programs such as the one in Figure 2.1 can still be considered functions

(defun c:BOX (/ pt1 pt2 pt3 pt4)
(setq pt1 (getpoint "Pick first corner: "))
(setq pt3 (getcorner pt1 "Pick opposite corner: "))
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
(command "line" pt1 pt2 pt3 pt4 "c")
)

Figure 2.1: A program to draw boxes

1. Use the Windows notepad to create a new text file called Box1.lsp

2. Carefully enter the first line from figure 2.1. Or you can simply cut and paste the data from this
document into the Box1.lsp file.

 (defun C:BOX (/ pt1 pt2 pt3 pt4)

 Be sure you have entered everything exactly as shown before you go to the next line. Pay special attention
to the spaces between elements of the line. Also note the capitalization of letters. Capitalization is not
particularly important at this point however.

 3. Press return to move to the next line.

 4. Carefully, enter the second line again checking your typing and the spacing between elements before go
to the next line. Also be sure to use the Shift-Apostrophe key for the double quotes, do not use two

The ABC’s of AutoLISP by George Omura

31

Copyright © 2001 George Omura,,World rights reserved

apostrophes.

 5. Continue entering each line as described in the previous steps. When you are done, double check your
file for spelling errors and make sure the parentheses are balanced. Save and exit the Box1.lsp file. You
now have a program that you can load and run during any AutoCAD editing session.

Loading an AutoLISP file
To load an AutoLISP file you use an AutoLISP

1.Start AutoCAD and create a new file called Box1.

2. When you are in the drawing editor, enter the following at the command prompt:

 (load "box")

 If the Box.lsp file is in a directory other than the current directory, the \lsp directory for example, enter

(load "/lsp/box")

The box program is now available for you to run.

 As you can see, the Load function is used like any other AutoLISP function. It is the first element of an expression
followed by an argument. The single argument to the load function is always a string value. Notice that within the
string in the above example, the forward slash sign is used to designate a directory instead of the usual backslash.
This is important to keep in mind as it is a source of confusion to both novice and experienced AutoLISP users.
AutoLISP uses the backslash to denote special codes within strings. Whenever AutoLISP encounters a backslash
within a string, it expects a code value to follow. These codes allow you to control the display of strings in different
ways such as adding a carriage return or tab. If you use the backslash to designate directories, you must enter it
twice as in the following example:

 (load "\\lsp\\box")

 Once the file is loaded, you will get the message:

 C:BOX

 You may have noticed that Load uses a string data type for its argument. Just as with numbers, strings evaluate to
themselves, so when AutoLISP tries to evaluate "/lsp/box" the result is "/lsp/box".

Running a Loaded Program
Once you have loaded the box program, you can run it at any time during the current editing session. However, once
you exit AutoCAD the program is not saved with the file. You must re-load the program file in subsequent editing
sessions before it can be used again. Now try running the program.

 1. First, set the snap mode and the dynamic coordinate readout on.

The ABC’s of AutoLISP by George Omura

32

Copyright © 2001 George Omura,,World rights reserved

 2. Enter the word Box at the command prompt. You should get the following prompt:

Pick first corner:

3. If your screen is in text mode, use the F2 key to shift to the graphic screen. Move the cursor so that the
coordinate readout reads 2.0000,3.0000 and pick that point. The next prompt appears:

Pick opposite corner:

4. Now move your cursor. A window follows the motion of your cursor (see figure 2.2). Move the corner of
the window to the so that the coordinate 8.0000,6.000 is displayed on the coordinate readout then pick that
point. The box is drawn and the Command prompt returns. Figure 2.3 gives you a general description of
how this box program works.

Figure 2.2: The Getcorner window

The ABC’s of AutoLISP by George Omura

33

Copyright © 2001 George Omura,,World rights reserved

Understanding How a Program Works
Up until now, you have been dealing with very simple AutoLISP expressions that perform simple tasks such as
adding or multiplying numbers or setting system variables. Now that you know how to save AutoLISP code in a file,
you can begin to create larger programs. The box program is really nothing more than a collection of expressions
that are designed to work together to obtain specific results. In this section, we will examine the Box program to see
how it works.

 The Box program draws the box by first obtaining a corner point using Getpoint:

 (setq pt1 (getpoint pt1 "Pick first corner: ''))

 The user will see only the prompt portion of this expression:

 Pick first corner:

 Next, the opposite corner point is obtained using Getcorner (see Figure 2.3).

 (setq pt3 (getcorner pt1 "Pick opposite corner: ''))

 Again, the user only sees the prompt string:

Pick opposite corner:

Figure 2.3: The workings of the box program

 You may recall that Getcorner will display a window as the user move the cursor. In this box program, this window
allows the user to visually see the shape of the box before the opposite corner is selected (see figure 2.2). Once the

The ABC’s of AutoLISP by George Omura

34

Copyright © 2001 George Omura,,World rights reserved

second point is selected, the Box program uses the point coordinates of the first and opposite corners to derive the
other two corners of the box. This is done by manipulating the known coordinates using Car, Cadr, and List (see
Figure 2.4).

 pt2 (list (car pt3) (cadr pt1)))

pt4 (list (car pt1) (cadr pt3)))

Figure 2.4: Using Car, Cadr, and List to derive the remaining box corners

 Pt2 is derived by combining the X component of Pt3 with the Y component of Pt1. Pt 4 is derived from combining
the X component of Pt1 with the Y component of Pt3 (see figure 2.5).

The ABC’s of AutoLISP by George Omura

35

Copyright © 2001 George Omura,,World rights reserved

Figure 2.5: Using Car and Cadr to derive Pt2 and Pt4

The ABC’s of AutoLISP by George Omura

36

Copyright © 2001 George Omura,,World rights reserved

Using AutoCAD Commands in AutoLISP
The last line in the box program:

 (command "line'' pt1 pt2 pt3 pt4 "c'')

 shows you how AutoCAD commands are used in an AutoLISP expression (see figure 2.6). Command is an
AutoLISP function that calls standard AutoCAD commands. The command to be called following the Command
function is enclosed in quotation marks. Anything in quotation marks after the Command function is treated as
keyboard input. Variables follow, but unlike accessing variables from the command prompt, they do not have to be
preceded by an exclamation point. The C enclosed in quotation marks at the end of the expression indicates a Close
option for the Line command (see Figure 2.7.

Figure 2.6: Using AutoCAD commands in a function.

Figure 2.7: Variables help move information from one expression to another.

The ABC’s of AutoLISP by George Omura

37

Copyright © 2001 George Omura,,World rights reserved

How to Create a Program
The box program is like a collection of expressions working together to perform a single task. Each individual
expression performs some operation who's resulting value is passed to the next expression through the use of
variables (see figure 2.8).

Figure 2.8: Arguments are assigned to variables in the function

The first line in the box program:

 (defun c:BOX (/ pt1 pt2 pt3 pt4)

 ties the collection of expressions that follow into a command called Box. Defun is a special function that allows you
to define other functions. The arguments to defun are first the function name, in this case, C:BOX, followed by the
argument list. The Quote function is automatically applied to the first argument. The c: in the name tells AutoLISP
that this function is to act like an AutoCAD command. This means that if the function name is entered at the

The ABC’s of AutoLISP by George Omura

38

Copyright © 2001 George Omura,,World rights reserved

AutoCAD command prompt, the function will be executed as an AutoCAD command. The name following the C:
should entered in upper case letters. Care should be take not to give your functions names reserved for AutoLISP's
built in functions and atoms. If, for example, you were to give the box function the name setq, then the setq function
would be replaced by the box function and would not work properly.

Table 1.1 shows a list of AutoLISP function names that can easily be mistaken for user defined variable names.

abs if or

and length pi

angle list read

apply load repeat

atom member reverse

distan
ce

nil set

eq not t

equal nth type

fix null while

float open

 Table 1.1 AutoLISP function names

The list that follows the name Box is an argument list. An argument list is used for two purposes. First, it is used
where the function is called from another function to evaluate a set of values. For example, you could define a
function that adds the square of two variables. Try entering the following function directly into the AutoLISP
interpreter.

 (defun ADSQUARE (x y)

(+ (* x x) (* y y))

)

 1. Carefully enter the first line. Pay special attention to the parentheses and spaces.

(defun ADSQUARE (x y)

2. Once you are sure everything is correct, press Return. You will see the following prompt:

The ABC’s of AutoLISP by George Omura

39

Copyright © 2001 George Omura,,World rights reserved

(>

This tells you that your expressing is missing one closing parenthesis.

3. Enter the rest of the function at the 1> prompt again checking your typing before pressing Return.

 In this example, the c: is left out of the Defun line. By doing this, you create a function that can be used in other
functions like a subprogram or during an AutoCAD command. We'll discuss this item in more detail later. Note that
the variables X and Y are included in the parentheses after the name of the function, ADSQUARE. This is the
argument list. To use this function, enter the following at the command prompt:

 (adsquare 2 4)

AutoLISP returns 20. The variables X and Y in the ADDSQUARE function take on the arguments 2 and 4 in the
order they are listed. X takes on the value of 2, and Y takes on the value of 4 (see figure 2.9).

Figure 2.9: Arguments are evaluated before they are assigned to variables in the function

The ABC’s of AutoLISP by George Omura

40

Copyright © 2001 George Omura,,World rights reserved

Variables can also be used to pass values to the function. For example, if you have a variable called A whose value
is 2 and a variable B whose value is 4, you could use A and B in place of the 2 and 4. Enter the following:

 (setq a 2)

(setq b 4)

(adsquare a b)

 AutoLISP returns 20. Remember that AutoLISP evaluates the arguments before applying them to the function. This
rule applies even to functions that you create yourself. In this case, the A is evaluated to 2 before it is passed to the
X variable B is evaluated to 4 before it is passed to the Y variable.

Local and Global Variables
The second use for the argument list is to determine global and local variables. Global variables maintain their value
even after a function has finished executing. In chapter 1, when you assign the value 1.618 to the variable Golden,
Golden holds that value no matter where it is used. Any function can evaluate Golden to get its value, 1.618. Enter
the following:

 (setq golden 1.618)

(adsquare 2 golden)

 The value of 6.61792 is returned. A local variable, on the other hand, holds its value only within the function it is
found in. For example, the variable X in the Adsquare function above holds the value 2 only while the Square
function is evaluated. Once the function is finished running, X's value of 2 is discarded. Enter the following:

 !x

 Nil is returned. The variables A, B, and Golden, however, are global and will return a value. Enter the following:

 !golden

 The value 1.618 is returned. This temporary assigning of a value to a variable with a function is called binding. This
term should not be confused with the term bound which often refers to the general assignment of a value to a
variable. In the example of X above, we say that a binding is created for the value X within the function Adsquare.
In order for binding to take place, a variable must be used within a function that includes that variable in its
argument list. Global variables cannot have bindings since they are not by their very definition confined to
individual functions (see figure 2.10).

The ABC’s of AutoLISP by George Omura

41

Copyright © 2001 George Omura,,World rights reserved

Figure 2.10: Local and Global variables

Since an argument list is used for two purposes, the forward slash symbol is used to separate variables used locally
from function arguments to which values are passed when the function is called. The variables used to hold the
value of arguments are listed first. Then a slash is entered, then the list of local variables as in the following
example:

 (defun square2 (x y / dx dy)

(setq dx (* x x))

(setq dy (* y y))

(+ dx dy)

)

 X and Y are variables that will be assigned values when the function is called initially, as in the Square function
given earlier. Dx and Dy, on the other hand, are variables assigned values within the function, so they follow the
slash sign. In either case, the variables are local. Arguments left out of the list become global. If, for example, Dy is
left out of the argument list, it's value will remain in the AutoLISP system memory for as long as the current editing

The ABC’s of AutoLISP by George Omura

42

Copyright © 2001 George Omura,,World rights reserved

session lasts, and can be retrieved through evaluation by any other function. However, all of the functions and
variables you have created in this session will be lost as soon as you exit the drawing editor.

 We should mention that you must include a space before and after the slash sign in the argument list. If these spaces
are not present, you will get an error message.

 In both the adsquare and Square2 functions above we left out the c:. As we mentioned, this allows the function to be
used by other functions like a subprogram. You can also use functions defined in this way in the middle of other
commands by entering the name of the function enclosed by parentheses at the command prompt. For example, you
could define a function that converts centimeters to inches. Carefully enter the following function:

 (defun CMTOI (cm)

(* cm 0.3937)

)

 Now suppose you started the Insert command to insert a symbol file into a drawing. When the prompt

 X scale factor (1) / Corner / XYZ:

 appears, you could enter

 (cmtoi 90)

 to signify that your symbol is to be given the scale of 90 centimeters.

The AutoLISP function Cmtoi will convert the 90 to 35.433 and enter this value for the X scale factor prompt. This
can be quite useful where a value conversion or any other type of data conversion is wanted.

Automatic Loading of Programs
Eventually, you will find that some of your AutoLISP programs are indispensable to your daily work. You can have
your favorite set of AutoLISP programs automatically load at the beginning of every editing session by collecting all
of your programs into a single file called Acad.lsp. Be sure that Acad.lsp is in your AutoCAD directory. By doing
this, you don't have to load your programs every time you open a new file. AutoCAD will look for Acad.LSP when
it enters the drawing editor, and if it exists, AutoCAD will load it automatically.

1. Exit AutoCAD and check to see if you already have a file called Acad.lsp in your Acad directory. If so,
rename it to Acadtemp.lsp.

2. Next, rename the Box.lsp file to Acad.lsp. Place Acad.lsp in your AutoCAD directory if it isn't there
already.

3. Start AutoCAD and open any file. When the drawing editor loads, notice the following message in the
prompt area:

The ABC’s of AutoLISP by George Omura

43

Copyright © 2001 George Omura,,World rights reserved

Loading acad.lsp...

Now, the box program is available to you without having to manually load it.

Though the Acad.lsp file only contained the box program, you could have included several programs and functions
in that single file. Then, you would have access to several AutoLISP programs by loading just one file.

Managing Large Acad.lsp files
As you begin to accumulate more AutoLISP functions in your ACAD.lsp file, you will notice that AutoCAD takes
longer to load them. This delay in loading time can become annoying especially when you just want to quickly open
a small file to make a few simple revisions. Fortunately, there is an alternative method for automatically loading
programs that can reduce AutoCAD's start-up time.

 Instead of placing the programs code in Acad.lsp, you can use a program that loads and runs the program in
question. For example, you could have the following line in place of the box program in the Acad.lsp file:

 (defun c:BOX () (load "/lsp/box") (c:box))

 We will call this a box loader function. Once the above function is loaded, entering Box at the command prompt
will start it. This box loader function then loads the real Box program which in turn replaces this box loader
function. The (c:box) in the box loader function is evaluated once the actual box program has been loaded thus
causing the box program to run. C:BOX is the symbol representing the program BOX so when it evaluated, like any
function, it will run.

 As you can see, this program takes up considerably less space that the actual box program and will therefore load
faster at start-up time. You can have several of these loading programs, one for each AutoLISP function or program
you wish to use on a regular basis. Imagine that you have several programs equivalent in size to the box program.
the Acad.lsp file might be several pages long. A file this size can take 30 seconds to load. If you reduce each of
those programs to one similar to the box loader function above, you substantially reduce loading time. Several pages
of programs could be reduced to the following:

 (defun C:PROGM1 () (load "/lsp/progm1") (C:PROGM1))

(defun C:PROGM2 () (load "/lsp/progm2") (C:PROGM2))

(defun C:PROGM3 () (load "/lsp/progm3") (C:PROGM3))

(defun C:PROGM4 () (load "/lsp/progm4") (C:PROGM4))

(defun C:PROGM5 () (load "/lsp/progm5") (C:PROGM5))

(defun C:PROGM6 () (load "/lsp/progm6") (C:PROGM6))

(defun C:PROGM7 () (load "/lsp/progm7") (C:PROGM7))

 If you imagine that each of the functions being called from the above example is several lines long then you can see

The ABC’s of AutoLISP by George Omura

44

Copyright © 2001 George Omura,,World rights reserved

that as the list of programs in Acad.lsp grows, the more space you will save. By setting up your Acad.lsp file in this
way, you also save memory since functions are loaded only as they are called.

Using AutoLISP in a Menu
There are two reasons why you might write AutoLISP code directly into the menu file. The first is to selectively
load external AutoLISP programs as they are needed. You may have several useful but infrequently used programs
that take up valuable memory. You might prefer not load these programs at startup time. By placing them in the
menu file, they will only load when they are selected from the menu. In fact, this is what the AutoShade and
3dobjects menu options do. When you pick Ashade from either the screen or pull down menu, and AutoShade is
present on your computer, an AutoLISP program called Ashade.lsp is loaded.

The code of the program can be present in the menu file or you can use a method similar to the one described earlier
to load external AutoLISP files. However, if you use the menu system to load external AutoLISP files, you must a
slightly different method.

In the example we gave for loading programs from external AutoLISP file, the loader program is replaced by the
fully operational program of the same name. But if you were to place the following expression in a menu, the
program would load every time the menu option was selected.

 [box]^C^C(load "box");box

 There is nothing wrong with loading the program each time it is run but if the AutoLISP file is lengthy, you may get
tired of waiting for the loading to complete every time you select the item from the menu. A better way to load a
program from the menu is to use the If function as in the following:

[box]^C^C(if (not C:box)(load "box")(princ "Box is already loaded. ");box

In this example, we show three new functions, If, Not and Princ. The If functions checks to see if certain conditions
can be met then evaluates an expression depending on the result. The If functions expects the first argument to test
the condition that is to be met while the second argument is the expression to be evaluated if the condition is true. A
third expression can optionally be added for cases where you want an expression to be evaluated when the test
condition returns nil. The Not function returns a T for true if its argument evaluates to nil, otherwise it returns nil
(see figure 2.11).

The ABC’s of AutoLISP by George Omura

45

Copyright © 2001 George Omura,,World rights reserved

Figure 2.11: Using the If function

So, in the menu sample above, if C:BOX does not exists, Not will return T for true and the If function evaluates the
(load "box") expression thereby loading the Box program. If C:BOX has already been loaded, then Not function
returns nil and box.lsp will not be loaded again. Instead, the second argument will be evaluated. This expression:

 (princ "Box is already loaded. ")

 simply displays the string:

 Box is already loaded.

 on the command prompt.

 You may have noticed that the If function does not conform to the standard rules of evaluation. Where If is used,
the second or third argument is evaluated depending on the value of the first argument.

 The second reason for placing code in the menu is speed. Instead of creating a function using Defun, you can set up
a program to be read and executed line by line. This saves time since the interpreter reads and executes each
expression of your program as they occur in the menu listing instead of reading the entire set of expressions then
executing the program. Memory is also saved since Defun is not used to define a new function. Figure 2.11 shows a
listing of how the box program from chapter 1 would look as a menu option.

[BOX] ^C^C(setvar "menuecho" 1);+
(setq pt1 (getpoint "Pick first corner: "));\+
(setq pt3 (getcorner pt1 "Pick opposite corner: "));\+
(setq pt2 (list (car pt3) (cadr pt1)));+
(setq pt4 (list (car pt1) (cadr pt3)));+
line; pt1; pt2; pt3; pt4;C;)

Figure 2.12: The box program as a menu option

The ABC’s of AutoLISP by George Omura

46

Copyright © 2001 George Omura,,World rights reserved

NOTE that the Defun function is absent from the listing. When the box option is picked from the menu, AutoCAD
reads the associated text just as it would any menu option. Since the text in this case is AutoLISP code, the
AutoLISP interpreter evaluates each expression as if it were entered through the keyboard.

NOTE that the semicolon is used to indicate the enter key at the end of each expression. A backslash is used to
pause for input, just as you would have a backslash in other commands that require mouse or keyboard input. Also
note the use of the plus sign indicating the continuation of the menu item. Finally, note that the last line of the menu
item uses the exclamation point to enter the values of the variables as responses to the Line command. The last C is
the Close option of the Line command. You may have noticed a new expression:

 (setvar "menuecho" 1)

 The Setvar function in the above expression does the same thing as the Setvar command in AutoCAD. In this case,
it sets the menuecho system variable to 1. This setting prevents the actual AutoLISP code from being displayed on
the command prompt.

 1. Using your word processor, copy the above listing into a file called Box.mnu, again being careful to
input the listing exactly as shown above.

2. Get back into the AutoCAD drawing editor then use the Menu command to load the Box menu you just
created. The AutoCAD menu will disappear and will be replaced by the single word Box.

3. Pick the Box option from the menu, and you will see the prompts you entered when you created the Box
menu above. This program will work in the same way as the Box.lsp program.

4. To get the AutoCAD menu back, enter the command Menu and enter acad at the menu name prompt.

 Since Defun is not used in this example, no argument list is used. Any variables used in the listing becomes global.
For this reason, when using menus for AutoLISP programs, it especially important to keep track of variable names
so they do not conflict with other variables from other programs.

Using Script Files
AutoCAD has a useful feature that allows you to write a set of pre-defines sequence of command and responses
stored as an external text file. This scripting ability is similar to writing a macro in the menu file. The main
difference between menu macros and scripts is that scripts do not allow you to pause for input. Once a script is
issued, it runs until it is completed. Also, unlike menu macros, scripts can exist as independent files that are called as
they are needed from the command prompt.

Although it is not commonly done, you can put your AutoLISP programs in a script file. In fact, you can directly
convert your AutoLISP program files directly to a script file simply by changing the file extension from .LSP to
.SCR. To load your programs, you would use the AutoCAD Script command instead of the AutoLISP load function.
There may be times when you want to embed AutoLISP code into a script you have written. You can either write the
code directly into the script file or use the load function to load an AutoLISP file from the script.

The ABC’s of AutoLISP by George Omura

47

Copyright © 2001 George Omura,,World rights reserved

Conclusion
You have been introduced to some new ways of getting more usefulness from AutoLISP.

• The function Defun allows you to create programs that can be invoked from the AutoCAD
command line.

• Variables can be used to pass information between expressions and functions.

• Functions can be created that can be used to respond to AutoCAD commands.

• Functions and programs can be stored as files on disk to be easily retrieved at a later date.

• Frequently used functions can be stored in a file called Acad.lsp to be loaded automatically.

We encourage you to try creating some simple functions and save them to disk. You can start out with the functions
presented in this chapter or you can try your hand at writing some functions on your own. You may also want to try
using the menu file to store programs or you may want to keep each of your programs as separate files and load
them as they are needed.

In the next chapter, you will be introduced to some of the ways you can plan, organize and execute a programming
project.

The ABC’s of AutoLISP by George Omura

48

Copyright © 2001 George Omura,,World rights reserved

Chapter 3: Organizing a Program
Introduction

Looking at a Programs Design

Outlining your Programming Project

Using Functions

Adding a Function

Reusing a Function

Creating a 3D Box program

Creating a 3D Wedge Program

Making Your Code More Readable

Using Prettyprint

Using Comments

Using Capital and Lower Case Letters

Dynamic Scoping

Conclusion

Introduction
When you write a program, you are actually setting out to solve a problem. It is often helpful to develop a plan of
how you want to solve your problem. The plan may need revisions along the way, but at least it gives you a
framework out of which you can get both an overall and detailed understanding of the problem you are trying to
solve. Often the most monumental problem can be broken into parts that can be easily dealt with.

By taking some time to analyze your goals and writing down some preliminary plans, you can shorten your program
development time considerably. In this chapter we will discuss some methods for planning your programming
efforts and along the way, you will get a more detailed look at how AutoLISP works.

Looking at a Programs Design
As simple as the box.lsp program is, it follows some basic steps in its design. These steps are as follows:

1. Establish the name of the program or function

2. Obtain information by prompting the user

3. process the information

4. Produce the output

 Lets look at a breakdown of the program to see these steps more clearly. The first line defines the program by
giving it a name and listing the variables it is to use.

The ABC’s of AutoLISP by George Omura

49

Copyright © 2001 George Omura,,World rights reserved

 (defun c:box (/dx dy pt1 pt2 pt3 pt4)

 The second and third line of the program obtain the minimum information needed to define the box.

 (setq pt1 (getpoint "Pick first corner: "))

(setq pt3 (getcorner "Pick opposite corner: "))

 The fourth, fifth, and sixth lines process the information to find the other two points needed to draw the box.

 (setq pt2 (list (car pt3) (cadr pt1)))

(setq pt4 (list (car pt1) (cadr pt3)))

 The last line draws the box in the drawing editor.

 (command "line'' pt1 pt2 pt3 pt4 "c'')

 This four step process can be applied to nearly every program you produce.

 You should also consider how standard AutoCAD commands work. A program that has an unusual way of
prompting for information will seem jarring and unfamiliar to the user. By designing your prompts and prompt
sequence to match closely those of AutoCAD's, your programs will seem more familiar and therefore easier to use.
For example, when a command requires editing of objects, you are first prompted to select the objects to be edited.
So when you design a program that performs some editing function, you may want to follow AutoCAD's lead and
have your program select objects first (we will cover functions that allow you to select objects later in this book).

Outlining Your Programming Project
But before you get to actual writing of code, you will want to chart a path describing what your program is to do.
The box program might be planned as the following sequence of statements:

1. Get the location of one corner of the box. Save that location as a variable called pt1.

2. Get the location of the other corner of the box. Save that location as a variable called pt3.

3. calculate the other two corners by using information about the known corner locations pt1 and pt3.

4. Draw the box

 The above list outlines the procedures needed to accomplish your task. This type of list is often called Pseudocode.
It is a plain language description of the code your program is to follow. It acts like an outline of your programs code.
You could even incorporate your pseudocode as comments to the actual code of the program. Just as with an outline,
you may have to go through several iterations of lists like this before actually hitting on one that seem workable.

 Along with the pseudocode of a program, you may also want to sketch out what your program is supposed to do,
especially if your program is performing some graphic manipulation. Figure 3.1 shows a sketch done as an aid to
developing the box program.

The ABC’s of AutoLISP by George Omura

50

Copyright © 2001 George Omura,,World rights reserved

Figure 3.1: Sample sketch used to develop box.lsp

Using Functions
We have broken the box program down conceptually into three processes. We can also break it down physically by
turning each process into a function as in the following:

The ABC’s of AutoLISP by George Omura

51

Copyright © 2001 George Omura,,World rights reserved

 (defun getinfo ()

(setq pt1 (getpoint "Pick first corner: "))

(setq pt3 (getcorner pt1 "Pick opposite corner: "))

)

(defun procinfo ()

(setq pt2 (list (car pt3) (cadr pt1)))

(setq pt4 (list (car pt1) (cadr pt3)))

)

(defun output ()

(command "line'' pt1 pt2 pt3 pt4 "c'')

)

You now have three functions that can be called independently. We now need a way to tie these functions together.
We can write a main program that does just that:

 (defun C:BOX1 (/ pt1 pt2 pt3 pt4)

(getinfo)

(procinfo)

(output)

)

Let's see how this new version of the Box drawing program works.

1. Open a new AutoLISP file called box1.lsp.

2. Enter the above three functions, Getinfo, Procinfo, and output, along with the new box program. Your file should
look like Figure 3.2.

3. Open a new AutoCAD file called chapt3= and load the Box1.lsp file.

4. Run the C:BOX1 program. You will see that it acts no differently from the first box program in chapter 1.

The ABC’s of AutoLISP by George Omura

52

Copyright © 2001 George Omura,,World rights reserved

(defun getinfo ()
(setq pt1 (getpoint "Pick first corner: "))
(setq pt3 (getcorner pt1 "Pick opposite corner: "))
)

(defun procinfo ()
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
)

(defun output ()
(command "pline" pt1 pt2 pt3 pt4 "c")
)

(defun C:BOX1 (/ pt1 pt2 pt3 pt4)
(getinfo)
(procinfo)
(output)
)

Figure 3.2: The contents of box1.lsp

The C:Box1 program listed above acts as a sort of master organizer that evaluates each of the three functions,
getinfo, procinfo, and output, as they are needed. This modular approach to programming has several advantages.

First, since each function exists independently, they can be used by other programs thereby reducing the amount of
overall code needed to run your system. Though in the above example, we actually increased the size of the Box
program, as you increase the number of program you use, you will find that you can use functions from this program
in other programs. Functions you write in this way can serve as tools in building other programs.

 Second, while writing programs, you can more easily locate bugs since they can be localized within one function or
another. Whenever AutoCAD encounters an error, it displays an error message along with the offending expression.

Third, smaller groups of code are more manageable making your problem solving task seem less intimidating. The
actual Box program represents the problem in general terms while the functions take care of the details. You can get
a clearer idea of how your programs work because clarity is built into the program by virtue of this modular
structure.

 Finally, features can be added and modified more easily by "plugging" other functions either into the main program
or into the individual functions that make up the program.

The ABC’s of AutoLISP by George Omura

53

Copyright © 2001 George Omura,,World rights reserved

Adding a Function
As great a program AutoCAD is, it does have some glaring shortcomings. One is the fact that it does not
dynamically display relative X and Y coordinates. It does display relative polar coordinates dynamically, but often,
it is helpful to see distances in relative X and Y coordinates. One example where this would be useful is in the
creation of floor plans where a dynamic reading of relative X and Y coordinates could help you size rooms in a
building. It would be also helpful if this dynamic readout would display the rooms area as the cursor moved. Figure
3.3 Shows a function that displays relative X and Y coordinates in the status line.

(defun RXY (/ pt lt x last pick lpt1)
(if (not pt1)(setq lpt1 (getvar "lastpoint"))(setq lpt1 pt1))
 (while (/= pick t)
 (setq pt (cadr (setq lt (grread t))))
 (if (= (car lt) 5)(progn
 (setq x (strcat
 (rtos (- (car pt) (car lpt1))) " x "
 (rtos (- (cadr pt) (cadr lpt1))) " SI= "
 (rtos (*(- (car pt) (car lpt1))
 (- (cadr pt) (cadr lpt1))
)
 2 2)
)
)
 (grtext -2 x)
)
)
 (setq pick (= 3 (car lt)))
)
(cadr lt)
)

Figure 3.3: The RXY function

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open an AutoLISP file called Rxy.lsp and copy the program listed in figure 3.4. Check your file
carefully against the listing to be sure it is correct.

3. Return to the Chapt3 AutoCAD file.

4. Turn on the snap and dynamic coordinate readout.

5. Load Rxy.LSP then start the line command.

The ABC’s of AutoLISP by George Omura

54

Copyright © 2001 George Omura,,World rights reserved

6. At the First point prompt, pick the coordinate 2,2 then, at the next point prompt, enter the following:

(rxy)

Notice how the coordinate readout now dynamically displays the relative XY coordinates from the first
point you picked.

7. Move the cursor until the coordinate readout lists 6.0000,7.0000 then pick that point. A line is draw with
a displacement from the first point of 6,7.

 We won't go into a detailed explanation of this function quite yet. Imagine, however, that you have just finished
writing and debugging this function independent of the box program and you want to add it permanently to the box
program.

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open the box1.lsp file and change the Getinfo function to the following:

(defun getinfo ()

(setq pt1 (getpoint "Pick first corner: "))

(princ "Pick opposite corner: ")

(setq pt3 (rxy))

)

 Your new Box1.lsp file should look like figure 3.4. We have replaced the expression that obtains PT3 with
two lines, one that displays a prompt:

 (princ "Pick opposite corner: ")

 and another that uses the RXY function to obtain the location of PT3:

 (setq pt3 (rxy))

 Now when you use the box program, the width and height of the box along with its area are displayed on
the status prompt.

 3. Return to the Chapt3 file.

4. Load the Rxy.lsp and Box1.lsp files.

5. Run the C:BOX1 program by entering box1 at the command prompt.

6. Make sure the Snap mode and Dynamic coordinate readout are both on.

7. At the Pick first corner prompt, pick the coordinate 2,3.

The ABC’s of AutoLISP by George Omura

55

Copyright © 2001 George Omura,,World rights reserved

8. At the Opposite corner prompt, move the cursor and note how the coordinate readout responds. If you
move the cursor to the first point you picked, the coordinate readout will list 0,0 telling you that you are a
relative distance of 0,0 from the first corner.

9. Now move the cursor until the coordinate readout lists 5.0000,5.0000 then pick that point. You have
drawn a box exactly 5 units in the x axis by 5 units in the y axis.

(defun getinfo ()
(setq pt1 (getpoint "Pick first corner: "))
(princ "Pick opposite corner: ")
(setq pt3 (rxy))
)

(defun procinfo ()
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
)

(defun output ()
(command "pline" pt1 pt2 pt3 pt4 "c")
)

(defun C:BOX1 (/ pt1 pt2 pt3 pt4)
(getinfo)
(procinfo)
(output)
)

Figure 3.4: The revised Box1.lsp file

In the above exercise, after you pick the first corner of the box, the window no longer appears. Instead, the status
line changes to display the height and width of you box dynamically as you move the cursor. It also displays the
square inch area of that height and width. By altering a function of the main C:BOX1 program, you have added a
new features to it. Of course, you had to do the work of creating Rxy.lsp but Rxy.lsp can also be used to
dynamically display relative X Y coordinates in any command that reads point values.

Reusing Functions
You have seen that by breaking the box program into independent functions, you can add other functions to your
program to alter the way the program works. In the following section, you will create two more programs, one to
draw a 3D rectangle, and one to draw a wedge, using those same functions from the box program.

The ABC’s of AutoLISP by George Omura

56

Copyright © 2001 George Omura,,World rights reserved

Creating an 3D Box program
To create a 3D box from a rectangle, all you really need to do is extrude your rectangle in the Z axis then add a
3dface to the top and bottom of the box. Extruding the box can be accomplished using the Change command. Figure
3.5 shows how this would be done with standard AutoCAD commands.

Figure 3.5: Drawing a three-dimensional box manually

Your box program also needs a way to prompt the user for a height. We can accomplish these things by creating a
modified version of the C:BOX1 main program. Figure 3.6 shows such a program.

The ABC’s of AutoLISP by George Omura

57

Copyright © 2001 George Omura,,World rights reserved

(defun C:3DBOX (/ pt1 pt2 pt3 pt4 h)
(getinfo)
(setq h (getreal "Enter height of box: "))
(procinfo)
(output)
(command "change" "L" "" "P" "th" h ""
 "3dface" pt1 pt2 pt3 pt4 ""
 "3dface" ".xy" pt1 h ".xy" pt2 h
 ".xy" pt3 h ".xy" pt4 h ""
)
)

Figure 3.6: A program to draw a 3D box.

In the following exercise, you will add the 3D box program to the Box1.lsp file then run C:3DBOX.

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open the box1.lsp file again and add the program listed in figure 3.6 to the file. Your Box1.lsp file
should look like figure 3.7.

3. Return to the Chapt3 AutoCAD file.

4. Load Box1.lsp again. If you had to Exit AutoCAD to edit Box1.lsp, Load Rxy.lsp also.

5. Start the C:3DBOX program by entering 3dbox at the command prompt.

6. At the Pick first corner prompt, pick a point near the coordinate 2,3.

7. At the Pick opposite corner prompt, move the cursor until the coordinate readout lists 7.0000,5.0000 then
pick that point.

8. At the Enter height prompt, enter 6. A box appears.

9. Issue the Vpoint command and at the prompt:

Rotate/<View point> <0.0000,0.0000,1.0000>:

10. Enter -1,-1,1. Now you can see that the box is actually a 3d box.

11. Issue the Hide command. The box appears as a solid object.

The ABC’s of AutoLISP by George Omura

58

Copyright © 2001 George Omura,,World rights reserved

(defun getinfo ()
(setq pt1 (getpoint "Pick first corner: "))
(princ "Pick opposite corner: ")
(setq pt3 (rxy))
)

(defun procinfo ()
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
)

(defun output ()
(command "pline" pt1 pt2 pt3 pt4 "c")
)

(defun C:BOX1 (/ pt1 pt2 pt3 pt4)
(getinfo)
(procinfo)
(output)
)

(defun C:3DBOX (/ pt1 pt2 pt3 pt4 h)
(getinfo)
(setq h (getreal "Enter height of box: "))
(procinfo)
(output)
(command "change" "L" "" "P" "th" h ""
 "3dface" pt1 pt2 pt3 pt4 ""
 "3dface" ".xy" pt1 h ".xy" pt2 h
 ".xy" pt3 h ".xy" pt4 h ""
)
)

Figure 3.7: The Box1.lsp file with the C:3DBOX program added.

In the C:3DBOX program, a line is added to obtain height information.

 (setq h (getreal "Enter height of box: "))
 In most cases, it is impractical to try to enter a 3D point value using a cursor, though it can be done. We use the
Getreal function here to allow the input of a real value for the height since this is the simplest route to obtain the
height information.

The ABC’s of AutoLISP by George Omura

59

Copyright © 2001 George Omura,,World rights reserved

To actually draw the box, other AutoCAD commands have been added to give the box a third dimension:

(command "change" "L" "" "P" "th" h ""

"3dface" pt1 pt2 pt3 pt4 ""

"3dface" ".xy" pt1 h ".xy" pt2 h

".xy" pt3 h ".xy" pt4 h ""

)
This expression issues several AutoCAD commands to turn the simple rectangle drawn by the Output function into a
3 dimensional box. the first line changes the thickness of the box previously drawn by the Output function. The
second line draws a 3dface at the base of the box to close the bottom of the box. The third and fourth lines draw a
3dface at the top of the box by using the .xy point filter to designate the x and y coordinate of each corner, then
entering the Z coordinate using the H variable.

The ABC’s of AutoLISP by George Omura

60

Copyright © 2001 George Omura,,World rights reserved

Figure 3.8: A 3D box using the C:3DBOX program

You may have noticed that although you added the program C:3DBOX to the Box1.lsp file, you still called up the
program by entering its name, 3DBOX. We should emphasize here that AutoLISP files are only use as the vessel to
hold your program code. AutoLISP makes no connection between the program name and the name of the file that
holds the program. You could have called Box1.lsp by another name like Myprogm.lsp or Mybox.lsp, and the
programs would still run the same. Of course, you would have to give the appropriate name when loading the file.

The ABC’s of AutoLISP by George Omura

61

Copyright © 2001 George Omura,,World rights reserved

Creating a 3D Wedge Program
Let's create a new program that draws a wedge shape based on similar information given for the 3d box. Figure 3.9
shows how you might draw a wedge based on the rectangle drawn from the box program.

Figure 3.9: A program to draw a 3D wedge

The procedure outlined in Figure 3.9 was converted into the following AutoLISP program.

The ABC’s of AutoLISP by George Omura

62

Copyright © 2001 George Omura,,World rights reserved

(defun C:3DWEDGE (/ pt1 pt2 pt3 pt4 h)
 (getinfo)
 (setq h (getreal "Enter height of wedge: "))
 (procinfo)
 (output)
 (command "3dface" pt1 pt4 ".xy" pt4 h ".xy" pt1 h pt2 pt3 ""
 "3dface" pt1 pt2 ".xy" pt1 h pt1 ""
 "copy" "L" "" pt1 pt4
)
)

Try the following exercise to see how it works.

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open the box1.lsp file again and add the program listed above to the file.

3. Return to the Chapt3 AutoCAD file.

4. Load Box1.lsp again. If you had to Exit AutoCAD to edit Box1.lsp, Load Rxy.lsp also.

5. Erase the box currently on the screen.

6. Start the C:3DWEDGE program by entering 3dwedge at the command prompt.

7. At the Pick first corner prompt, pick a point at the coordinate 2,3.

8. At the Pick opposite corner prompt, pick a point so the wedge's base is 7 units wide by 5 units wide.

9. At the Enter height prompt, enter 6. A wedge appears.

10. Issue the hide command. The wedge appears as a solid object.

This Wedge program is nearly identical to the C:3DBOX program with some changes to the last expression.

 (command "3dface" pt1 pt4 ".xy" pt4 h ".xy" pt1 h pt2 pt3 ""

"3dface" pt1 pt2 ".xy" pt1 h pt1 ""

"copy" "L" "" pt1 pt3

)

The ABC’s of AutoLISP by George Omura

63

Copyright © 2001 George Omura,,World rights reserved

The first line of this expression draws a 3d face on the top and vertical face of the wedge. It does this by using
AutoCAD's .xy point filter to locate points in the Z coordinate. The second line draws a 3dface on the triangular side
of the wedge again using the .xy point filter. The last line copies the triangular face to the opposite side of the
wedge. Figure 3.10 shows the entire process.

Figure 3.10: Box1.lsp with the C:3DWEDGE program added

Now you have three programs which use as their basic building blocks the three functions derived from your
original Box program. You also have a function, rxy, which can be used independently to dynamically display
relative x y coordinates.

The ABC’s of AutoLISP by George Omura

64

Copyright © 2001 George Omura,,World rights reserved

Making Your Code More Readable
The box program is quite short and simple. As your programs grow in size and complexity, however, you will find
that it becomes more and more difficult to read. Breaking the program down into modules help to clarify your code.
There are other steps you can take to help keep your code readable.

Using Prettyprint
The term Prettyprint is used to describe a way to format your code to make it readable. Indents are used to offset
portions of code to help the code's readability. Figure 3.12 shows three examples of the C:3DBOX program. The
first example is arranged randomly. The second lists each expression as a line while the third makes use of
prettyprint to organize the code visually.

(defun C:3DBOX (/ pt1 pt2 pt3 pt4 h) (getinfo)
(setq h (getreal "Enter height of box: "))(procinfo)(output)
(command "change" "Last" "" "Properties" "thickness" h
"" "3dface" pt1 pt2 pt3 pt4 "" "3dface" ".xy" pt1 h ".xy" pt2
h ".xy" pt3 h ".xy" pt4 h ""))

(defun C:3DBOX (/ pt1 pt2 pt3 pt4 h)
(getinfo)
(setq h (getreal "Enter height of box: "))
(procinfo)
(output)
(command "change" "Last" "" "Properties" "thickness" h ""
"3dface" pt1 pt2 pt3 pt4 ""
"3dface" ".xy" pt1 h ".xy" pt2 h ".xy" pt3 h ".xy" pt4 h ""))

Figure 3.12 (continued on next page): Three ways to format the 3dbox program code

The ABC’s of AutoLISP by George Omura

65

Copyright © 2001 George Omura,,World rights reserved

 (defun C:3DBOX (/ pt1 pt2 pt3 pt4 h)
(getinfo)
(setq h (getreal "Enter height of box: "))
(procinfo)
(output)
 (command "change" "Last" "" "Properties" "thickness" h ""
 "3dface" pt1 pt2 pt3 pt4 ""
 "3dface" ".xy" pt1 h ".xy" pt2 h
 ".xy" pt3 h ".xy" pt4 h ""
)
)

Figure 3.12 (continuet)

In the third example, notice how the listing is written under the command function. Each new command to be issued
using the command functions is aligned with the next in a column. This lets you see at a glance the sequence of
commands being used. Look at the RXY.lsp function in figure 3.3. As you progress through the book, make note of
how the listings are written.

Using Comments
It often helps to insert comments into a program as a means of giving a verbal description of the code. Figure 3.13
shows the box program from chapter 1 including comments. The comments start with a semicolon and continue to
the end of the line. When AutoLISP encounters a semicolon, it will ignore everything that follows it up to the end of
the line. Using the semicolon, you can include portions of your Pseudocode as comments to the program code.

The ABC’s of AutoLISP by George Omura

66

Copyright © 2001 George Omura,,World rights reserved

;Function to draw a simple 2 dimensional box
;--

(defun c:BOX (/ pt1 pt2 pt3 pt4) ;define box function
(setq pt1 (getpoint "Pick first corner: ")) ;pick start corner
(setq pt3 (getpoint pt1 "Pick opposite corner: "));pick other corner
(setq pt2 (list (car pt3) (cadr pt1))) ;derive secondcorner
(setq pt4 (list (car pt1) (cadr pt3))) ;derive fourth corner
(command "line" pt1 pt2 pt3 pt4 "c") ;draw box
) ;close defun

;Function to display relative XY coordinates in status line
;--

(defun RXY (/ pt lt x last pick lpt1)
(if (not pt1)(setq lpt1 (getvar "lastpoint"))(setq lpt1 pt1)) ;get last point
 (while (/= pick t)
 (setq pt (cadr (setq lt (grread t)))) ;read cursor
 (if (= (car lt) 5)
 (progn ;location
 (setq x (strcat
 (rtos (- (car pt) (car lpt1))) " x " ;get X coord
 (rtos (- (cadr pt) (cadr lpt1))) " SI= " ;get Y coord
 (rtos (*(- (car pt) (car lpt1)) ;get area
 (- (cadr pt) (cadr lpt1))
) ;close mult
 2 2) ;close rtos
) ;close strcat
) ;close setq x
 (grtext -2 x) ;display status
) ;close progn
) ;close if
 (setq pick (= 3 (car lt))) ;test for pick
) ;close while
(cadr lt) ;return last
) ;coordinate

Figure 3.13: Sample of code using comments.

The ABC’s of AutoLISP by George Omura

67

Copyright © 2001 George Omura,,World rights reserved

Using Capitals and Lower Case Letters
In programming, case sensitivity is a term that means a programming language treats upper an lower case letters
differently. Except where string variables occur, AutoLISP does not have any strict requirements when it comes to
using upper and lower case letters in the code. However, you can help keep you code more readable by using upper
case letters sparingly. For example, you may want to use all uppercase letters for defuned function names only. That
way you can easily identify user created functions within the code. You can also mix upper and lower case letters for
variable names to help convey their meaning. This can help give the variable name more significance while still
keeping the name short to conserve space. For example, You might give the name NewWrd for a variable that
represents a new string value. NewWrd is more readable than say newwrd.

 The only time AutoLISP is case sensitive is where strings variables are concerned. The string "Yes" is different
from "yes" so you must take care when using upper and lower case letters in string variable types. We will cover this
topic in more detail in the next chapter.

Dynamic Scoping
You may have noticed that in the functions getinfo, procinfo, and output, the argument list is empty (see figure 3-2).
There are no variables local to those functions. The variables used in the programs C:BOX1, C:3DBOX, and
C:3DWEDGE appear in their argument lists rather than in the functions being called by these programs. A binding
is created between variables and their values within these programs so when the program ends, the variables loose
the value assigned to them.

On the other hand, there are no variable bindings created within the individual functions called by the main
programs so when the functions assign a value to a variables, the variables are free to all the functions used by the
main program. This ability of a function to access variables freely from the calling function is known as Dynamic
Scoping.

 Whenever a function looks for a variables value, it will look at its own local variables first. If the variables value is
not found, it then looks to the calling function or program for the value. Finally, if no value is found there, the
function will look at the global environment for a value.

 We saw this occur in chapter 2 with the Adsquare function. Adsquare looked in the AutoLISP global environment
for the value of Golden since golden was not a formal argument to Adsquare (see figure 2.10).

 In the case of the C:BOX1 program, all the variables used by the program and the functions it calls are included in
its argument list. For this reason, variables have a binding within C:BOX1 but are free tp any of the functions called
by C:BOX1.

 An interesting affect of Dynamic Scoping is the ability to maintain two variables of the same name, each holding
different values. To see how this works, do the following.

1. Erase the wedge currently on the screen.

2. Enter the following expression:

(setq pt1 (getpoint))

3. pick a point near the coordinate 6,1. This assigns the coordinate you pick to the variable pt1.

The ABC’s of AutoLISP by George Omura

68

Copyright © 2001 George Omura,,World rights reserved

4. Start the C:BOX1 program.

5. At the Pick first corner prompt, pick a point near the coordinate 2,3.

6. At the Pick opposite corner prompt, pick a point near so the box is about 7 units wide by 5 units wide.
The 2D box appears.

7. Issue the line command and at the first point prompt, enter:

!pt1

9. The line will start at the point you selected in step 3 of this exercise.

Figure 3.13: Dynamic Scoping

The ABC’s of AutoLISP by George Omura

69

Copyright © 2001 George Omura,,World rights reserved

In the pervious example, you assigned a point location to the variable pt1. Then you ran the C:BOX1 program which
also assigns a value to a variable called pt1. Pt1 in the C:BOX1 program is assigned the coordinate of the first corner
point you pick. After the box is drawn, you start the line command and enter the variable pt1 as the starting point.
You might expect the line to start from the corner of the box since it is the point last assigned to pt1. Instead, the line
begins at the location you had assigned to pt1 before you ran the wedge program. When you ran the C:BOX1
program, two versions of pt1 existed, The global version of pt1 you created before you ran C:BOX1, and the version
of pt1 created by the C:BOX1 program. The C:BOX1 version of pt1 lives and dies within that program and has no
affect on the global version of pt1 (see figure 3.13).

Dynamic Scoping of variables can simplify your program coding efforts since you don't have to create an argument
list for every functions you write. It can also simplify your management of variables. Dynamic Scoping can also
create some interesting side affects as seen in the last exercise. For this reason, you should try and keep track of your
variables and use global variables sparingly.

 Conclusion
In this chapter you examined methods for designing your programs in an organized fashion. The box example,
though simple enough to leave as a single program, allowed you to explore the concept of modular programming. It
also showed how a program might be structured to give a clear presentation to both the creator of the program and
those who might have to modify it later.

The ABC’s of AutoLISP by George Omura

70

Copyright © 2001 George Omura,,World rights reserved

Chapter 4: Interacting with the Drawing
Editor

Introduction

Prompting the User for Distances

How to Use Getdist

A Sample Program Using Getdist

How to Get Angle Values

Using Getangle and Getorient

How to Get Text Input

Using Getstring

Using Getkword

How to Get Numeric Values

Using Getreal and Getint

How to Control User Input

Using Initget

Prompting for Dissimilar Variable Types

Using Multiple Keywords

How to Select Groups of Object

Using Ssget

A Sample Program Using Ssget

Conclusion

Introduction
In the first three chapters of the book, you learned the basics of AutoLISP. You now have a framework within which
you can begin to build your programs. We can now discuss each built-in AutoLISP functions without loosing you in
AutoLISP nomenclature. In this and subsequent chapters, You will be shown how each of the built-in functions
work. Since the AutoLISP interpreter can be used interactively, you can enter the sample expressions shown in this
chapter at the AutoCAD command prompt to see first hand how they work.

 A key element in a user defined function is how it obtains information from the user. In this chapter, you will look
at some built in functions that expedite your programs information gathering. You have already seen the use of two
of these functions, Getpoint and Getcorner, in chapter 2 and 3.

The ABC’s of AutoLISP by George Omura

71

Copyright © 2001 George Omura,,World rights reserved

Prompting the user for Distances
You will often find the need to prompt the user to obtain a distance value. At times, it is easier for the user to select
distances directly from the graphic screen by using the cursor. AutoLISP provides the Getdist function for this
purpose.

 How to use Getdist

The syntax for Getdist is:

 (getdist [optional point value] [optional prompt string])

 You can optionally supply one or two arguments to Getdist. These arguments can be either string values which will
be used as prompts to user when the program runs, or point values indicating a position from which to measure the
distance. Getdist will accept both keyboard input as well as cursor input and it always returns values in real numbers
regardless of what unit style is current. This means that if you have your drawing set up using an architectural unit
style, Getdist will return a value in decimal units. The following exercises will demonstrate these uses.

There are three ways to use Getdist. First, you can use it to input a distance by picking two points using the cursor.
For example:

1. Open a file called Chapt4=. Set the snap mode and dynamic coordinate readout on.

2. Enter the following:

(setq dist1 (getdist "Pick point or enter distance: "))

The prompt line will display:

Pick first point or enter distance:

This prompt is the same as the string value used as the argument to Getdist. At this prompt, you can enter a
numeric value in the current unit style or in decimal units or you can pick a beginning point using the
cursor.

3. Pick a point at coordinate 3,3 with your cursor. You will get the prompt:

 Second point:

 and a rubber banding line will appear from the first point selected.

4. Pick a second point at coordinate 8,3 with you cursor, the distance between the two points selected is
assigned to the variable dist1.

5. Enter the following:

 !dist1

The ABC’s of AutoLISP by George Omura

72

Copyright © 2001 George Omura,,World rights reserved

 The distance value stored by dist1 is displayed.

 5.0

Using the same expression as above, you can also enter a distance value at the keyboard.

1. Enter the following:

 (setq dist1 (getdist "Pick point or enter distance: "))

 The prompt line will display:

 Pick first point or enter distance:

2. In the previous exercise, you picked a point at this prompt and Getdist responded by asking for a second
point. Instead of picking a point, enter the value of 6.5. Once you have done this, 6.5 is assigned to the variable
dist1.

3. Enter the following:

 !dist1

 The distance value stored by dist1 is displayed.

 6.5

 A third way to use Getpoint is to supply a point variable as an argument.

1. Enter the following at the command prompt:

 (setq pt1 (getpoint "Enter a point: "))

 When the Enter a point prompt appears, pick a point at the coordinate 3,3. The coordinate 3,3 is assigned
to the variable pt1.

2. Enter the following expression:

 (setq dist1 (getdist pt1 "Enter a second point: "))

 Notice that the variable pt1 is used as an argument to getdist. A rubber-banding line appears from pt1 and
the prompt displays the string prompt argument you entered with the expression.

3. Pick a point at the coordinate 9,6. The distance from pt1 to the point 9,6 is assigned to the variable dist1.

4. Enter the following to get the distance stored by dist1:

 !dist1

6.7082

 As you can see, getdist is quite flexible in the way it will accept input. This flexibility makes it ideal when you need

The ABC’s of AutoLISP by George Omura

73

Copyright © 2001 George Omura,,World rights reserved

to get sizes of objects from the user. The user has the flexibility to either enter a size value at the keyboard or
visually enter a size by picking points from the drawing area. The rubber-banding line provided by getdist allows the
user to visually select a size. Several AutoCAD commands act in a similar manner. For example, the Text command
allows you to select a text size either by entering a height or by visually selecting a height using your cursor. Figure
4.1 summarizes the three ways you can use Getdist.

Figure 4.1: Three methods that Getdist accepts for input

The ABC’s of AutoLISP by George Omura

74

Copyright © 2001 George Omura,,World rights reserved

A Sample Program Using Getdist
At times, you may need to find the distance between two points in a format other than the current unit style. Figure
4.2 lists a function that displays distances in decimal feet, a common engineering system of measure that AutoCAD
does not directly support in release 10.

;Function to get distance in decimal feet -- Decft.lsp------------------------
(defun decft (/ dst1 dst1s)
(setq dst1 (getdist "Pick first point or enter distance: ")) ;get distance
(setq dst1s (rtos (/ dst1 12.0) 2 4)) ;convert real value to string
(terpri) ;advance prompt one line
(strcat dst1s " ft.") ;return string plus "ft."
)

Figure 4.2: A program to display decimal feet

1. Exit AutoCAD by using the End command and open an AutoLISP file called Decft.lsp

2. Copy the file listed in Figure 4.1 into the Decft.lsp file. When you are done, and you are certain you have
corrected all transcription errors, close the file.

3. Open an AutoCAD file called Chapt4. Be sure add the = sign at the end of the file name.

4. Use the Setup option on the main menu to set up you drawing using the Architectural unit style at a scale
of 1/8 inch equals 1 foot. Select a sheet size of 11 by 17.

5. Set the snap distance to 12 by 12 and turn on the Dynamic coordinate readout.

6. Load the Decft.lsp file.

7. Enter Decft at the Command prompt. The following prompt appears:

 Pick first point or enter distance:

 8. Pick a point at the coordinate 17'-0",9'-0". The next prompt appears:

Second point:

9. Pick a point at the coordinate 100'-0",70'-0". The prompt displays the distance 103.0049 ft.

The first line defines the function. The second line obtains the distance using the Getdist function.

The ABC’s of AutoLISP by George Omura

75

Copyright © 2001 George Omura,,World rights reserved

 (setq dst1 (getdist "Pick first point: "))

 The third line uses the Rtos function to convert the distance value from a real to a string (see Chapter).

 (setq dst1s (rtos (/ dst1 12.0) 2 4))

This conversion is necessary because we want to append the string "ft" to the numeric distance value obtained from
getdist. The fourth line enters a return to the prompt line. The last line combines the string distance value with the
string "ft.".

 (terpri)

(strcat dst1s " ft")

 AutoLISP will return the value of the last expression evaluated so the result of combining the distance with "ft" is
displayed on the command prompt. The result value could be assigned to a variable for further processing as in the
following line:

 (setq dist2s (decft))

 In this simple expression, the final value returned by Decft is assigned to the variable Dist2s.

How to Get Angle Values
When you are manipulating drawings with AutoLISP, you will eventually need to obtain angular information.
AutoLISP provides the Getangle and Getorient functions for this purpose. These functions determine angles based
on point input. This means that two point values are required before these functions will complete their execution.
Getangle and Getorient will accept keyboard input of relative or absolute coordinates or cursor input to allow angle
selection from the graphic screen. Getangle and Getorient always return angles in radians, regardless of the current
AutoCAD Units settings. So even if you are using Architectural units, Getangle and Getorient will return a distance
in radians (see chapter___ for a discussion of radian to degree conversion).

Using Getangle and Getorient
The difference between Getangle and Getorient is that Getangle will return an angle value relative to the current
Unit setting for the 0 angle while Getorient will return an angle based on the "standard" 0 angle setting. For
example, the default or "standard" orientation for 0 degrees is a direction from left to right but you can use the Units
command or the Angbase or Angdir system variables to make 0 degrees a vertical direction. If a drawing is set up
with 0 degrees being a direction from bottom to top, Getangle will return a value relative to this orientation while
Getorient will return a value based on the "standard" orientation regardless of the Units, Angbase, or Angdir
settings. Figure 4.3 illustrates these differences.

The ABC’s of AutoLISP by George Omura

76

Copyright © 2001 George Omura,,World rights reserved

Figure 4.3: Comparing Getorient and Getangle

NOTE THAT Getorient ignores the angle direction setting. Even though the hypothetical setting uses a clockwise
direction for the positive angle direction, getorient still returns angles using the counter-clockwise direction for
positive angle.

 The syntax for Getangle and Getorient are:

 (getangle [optional point value] [optional prompt string])

(getorient [optional point value] [optional prompt string])

The ABC’s of AutoLISP by George Omura

77

Copyright © 2001 George Omura,,World rights reserved

 You can optionally supply one or two arguments to these functions. These arguments can be either string values
which will be used as prompts to user when the program is run, or point values indicating a position from which to
measure the angle.

 Getangle and getorient accept three methods of input. These methods are similar to those offered by getdist. In the
first method, you can enter two points.

1. Enter the following:

 (setq ang1 (getangle "Pick a point or enter angle: "))

 2. Pick a point at coordinate 3,3. A rubberbanding line appears from the picked point and you get the
prompt:

 Second point:

 3. Pick another point at coordinate 6,6. The angle obtained from getangle is then assigned to the variable
ang1.

4. Find the value of ang1 by entering the following:

 !ang1

 If the value returned by ang1 looks unfamiliar, it is because it is in radians. Radians are a way of describing an
angle based on a circle whose radius is one unit. Such a circle will have a circumference of 2 pi. An angle of 90
degrees would describe a distance along the circle equivalent to 1/4 of the circles circumference or pi/2 or 1.5708
(see figure 4.4). This distance is the radian equivalent of the angle 90 degrees. We will discuss radians and their
conversion to degrees in more detail in the next chapter.

The ABC’s of AutoLISP by George Omura

78

Copyright © 2001 George Omura,,World rights reserved

Figure 4.4: 90 degrees described in radians

Just as with getdist, if a point is selected using a cursor, you are prompted for a second point and a rubberbanding
line appears. The rubberbanding line allows you to visually see the angle you are displaying in the drawing area. The
second method is to enter an angle from the keyboard.

1. Enter the same expression you did previously:

 (setq ang1 (getangle "Pick a point or enter angle: "))

 2. Enter the following:

<45

 The angle of 45 degrees is applied to the variable ang1 in radians.

3. Enter the following to find the value of Ang1:

 !ang1

 The value 0.785398 is returned. This is the radian equivalent of 45 degrees.

 Just as with getdist, you can supply a point variable as an argument to getangle.

 1. Enter the following expression:

 (setq pt1 '(3 3))

 This assigns the coordinate 3,3 to the variable pt1.

2. Enter the expression:

(setq ang1 (getangle pt1 "Indicate angle: "))

A rubber-banding line appears from the coordinate 3,3.

3. Pick a point at coordinate 7,6. The angle from pt1 to 7,6 is assigned to ang1.

4. To display the value of ang1, enter:

 !ang1

 The value 0.6463501 is returned. This is the radian equivalent to 37 degrees.

By accepting both keyboard and cursor input, these two functions offer flexibility to the user. Angles can be

The ABC’s of AutoLISP by George Omura

79

Copyright © 2001 George Omura,,World rights reserved

specified as exact numeric values or visually using the cursor. The Rotate command works in a similar way by
accepting angular input as well as allowing the user to visually select an angle of rotation. Figure 4.5 summarizes the
three ways you can use Getanglel

Figure 4.5: Three methods Getangle accepts for input

The ABC’s of AutoLISP by George Omura

80

Copyright © 2001 George Omura,,World rights reserved

How to Get Text Input
You can prompt the user for text input using the Getstring and Getkword functions. These two functions always
return String variables even if a number is entered as a response. Though both Getstring and Getkword are used for
obtaining String values, They operate in slightly ways. Getstring will accept almost anything as input so it can be
used to acquire words or sentences of up to 132 characters long with no particular restriction to content. Getkword,
however, is designed to work in conjunction with the Initget function, (described in detail later in this chapter), to
accept only specific strings, or keywords, as input. If the user tries to enter a string to Getkword that is not a
predetermined keyword, the user is asked to try again.

Using Getstring
The syntax for Getstring is:

 (getstring [optional variable or number] [optional prompt string])

 You can optionally supply one or two arguments to Getstring. You can supply a string value for a prompt to the
user or you can also supply a non-nil variable or number, to signify that Getstring is to accept spaces in the user
input. For example, in many AutoCAD commands, pressing the space bar on your keyboard is the same as pressing
the return key. Normally, Getstring will also read a space bar as a return thus disallowing more than a single word to
be input to the Getstring function. Enter the following expression:

 (setq str1 (getstring "Enter a word: "))

 the following prompt appears:

 Enter a word:

 Try entering your first and last name. As soon as you press the space bar, the getstring function and the command
prompt returns read your first name. Display the value of str1 by entering:

 !str1

 Since the space bar is read as a return, once it is pressed, the entered string is read and AutoLISP goes on to other
business. If you provide non-nil variable or number argument, however, getstring will read a space bar input as
spaces in a text string thereby allowing the user to enter whole sentences or phrases rather than just single words.
Enter the following:

 (setq str2 (getstring T "Enter a sentence: "))

 The following prompt appears:

 Enter a sentence:

 Try entering your first and last name again. This time you are able to complete your name. Display the value of str2
by entering:

The ABC’s of AutoLISP by George Omura

81

Copyright © 2001 George Omura,,World rights reserved

 !str2

 An integer or real value or anything that will not evaluate to nil could replace the T argument in the above example.

 We would like to restate that you can enter numbers in response to Getstring but they will be treated as strings
therefore, you won't be able to apply math functions to them. You can, however, convert a number that is a string
variable type into a real or integer type using the Atof, Atoi and Ascii functions (see Chapter 7 for details).

Using Getkword
The syntax for Getkword is:

 (getkword [options prompt string])

Getkword offers only one argument option, the string prompt. Unlike most other functions, Getkword must be used
in conjunction with the Initget function. Initget is used to restrict the user by allowing only certain values for input.
If a disallowed value is entered, the user is prompted to try again. In the case of Getkword, Initget allows you to
specify special words that you expect as input. The most common example of this situation would be the Yes/No
prompt. For example, you may want to have your program perform one function or another based on the user
entering a Yes or No to a prompt. Enter the following:

(initget "Yes No")

(setq str1 (getkword "Are you sure? <Yes/No>: "))

The following prompt appears:

 Are you sure? <Yes/No>:

 If the user does not enter a Yes, Y, No or N, Getkword will continue to prompt the user until one of the keywords is
entered. Try entering MAYBE. You get the message:

 Invalid option keyword.

Are you sure? <Yes/No>:

 Now try entering Y. Getkword accepts the Y as a valid keyword and the whole keyword Yes is assigned to the
variable str1. If you had entered n or N for No, then the entire keyword No would have been assigned to str1.

 The words Yes and No are first established as keywords using the initget function. Getkword then issues the prompt
and waits for the proper keyword to be entered. If capital letters are used in the Initget function's string argument,
they too become keywords. This is why Y is also allowed as keyword in the above example (see Initget for more
details). It doesn't matter if you enter a capital or lower case Y. It only matters that you enter the letter that is
capitalized in the Initget string argument.

The ABC’s of AutoLISP by George Omura

82

Copyright © 2001 George Omura,,World rights reserved

How to Get Numeric Values
At times, you may want to prompt the user for a numeric value such as a size in decimal units or the number of
times a functions is to be performed. Getreal and Getint are the functions you would use to obtain numeric input.

 Using Getreal and Getint
Getreal always returns reals and Getint always returns integer values. The syntax for Getint is:

 (getint [optional prompt string])

The syntax for Getreal is:

 (getreal [optional prompt string])

Getreal and getint can be supplied an optional argument in the form of a prompt string. Just as with all the previous
get functions, this prompt string is displayed as a prompt when an expression using getreal or getint is evaluated.

How to Control User Input
You can add some additional control to the Get functions described in this chapter by using the Initget function. In
version 2.6 of AutoCAD, Initget was only used to provide keywords for the Getkword function (see Getkword
earlier in this chapter). With Version 9, other functions are added to give more control over input to the other Get
functions. For example, with Initget, you can force a Get function not to accept zero or negative values. Unlike most
functions, Initget always returns nil.

Using Initget
The syntax for Initget is:

(initget [optional bit code] [optional string input list])

You must supply at least one argument to initget. The bit code option controls the kinds of input that are restricted,
or, in some cases, how rubber-banding lines or windows are displayed. Table 4.1 lists the bit codes and their
meaning.

The ABC’s of AutoLISP by George Omura

83

Copyright © 2001 George Omura,,World rights reserved

CODE MEANING

1 null input not allowed

2 zero values not allowed

4 negative values not allowed

8 do not check limits for point values

16 return 3D point rather than 2D point

32 Use dashed lines for rubber-banding lines and windows

Table 4.1: The Initget bit codes and what they mean

Bit codes can be used individually or added together to affect several options at once. For example, if you do not
want a Get function to accept null, zero and negative values for input, you can use the following:

(initget 7)

(setq int1 (getint "Enter an integer: "))

In this example, though there is no formal 7 bit code value, for initget, 7 is 1 plus 2 plus 4 so the restrictions
associated with bit codes 1, 2, and 4 are applied to the Getint that follows. You can also write the Initget expression
above as:

(initget (+ 1 2 4))

Not all initget bit codes are applicable to all Get functions. Table 4.2 shows which code works with which Get
function.

The ABC’s of AutoLISP by George Omura

84

Copyright © 2001 George Omura,,World rights reserved

FUNCTION can be used with initget bit code:

getint 1,2,4

getreal 1,2,4

getdist 1,2,4,16,32

getangle 1,2,32

getorient 1,2,32

getpoint 1,8,16,32

getcorner 1,8,16,32

getkword 1

getstring no initget codes honored

 Table 4.2: The Bit codes and related Get functions

 Prompting for Dissimilar Variable Types
The Initget functions allows Get functions to accept string input even though a Get function may expect data in
another format. For example, you may want your function to accept either a point or string value from a prompt. To
do this you might have the following expressions:

 (initget 1 "Next")

(setq pt1 (getpoint "Next/<pick a point>: "))

 In this example, the user will see:

 Next/<pick a point>:

Initget sets up the word Next as a keyword. Once this is done, The Getpoint function in the following expression is
allowed to accept either a point value or the string "next" or "n". Note that the user need not enter his or her response
specifically in upper or lower case letters.

The ABC’s of AutoLISP by George Omura

85

Copyright © 2001 George Omura,,World rights reserved

Using Multiple Keywords
You can have more than one keyword for situations where multiple choices are offered. For example, you might
have a situation where the user is asked to choose from several fonts as in the following expressions:

(initget "Roman Gothicg Scripts")

(setq str1 (getkword "Font style = Roman/Gothicg/Scripts: "))

 The user will see the following prompt when the expressions are read:

 Font style = Roman/Gothicg/Scripts:

 In this case, the user can enter one of the three keywords listed in the prompt or their capital letters.

Capitalization is important in specifying the keyword as initget will allow both the whole word and the capitalize
letters of a word to be used as keywords.

 (initget "Style STeak STROKE")

(setq kword (getkword "Style/Steak/STROKE: "))

 In the above example, the user can either enter S for style, ST for string or STROKE for stroke. Initget expects the
input keyword to be as long as the capitalized portion of the keyword definition. Therefor, to enter the Style option,
the user only needs to enter s since that is capitalized portion of the keyword. For the Steak option, the user must
enter at least the ST portion of the word, once again, because the ST is capitalized in the argument. Finally, the user
must enter the entire word Stroke to select that keyword since it is all capitalized in the argument.

 Another way to specify keywords is to capitalize all the characters of the word then follow it with a comma and the
abbreviation as in the following:

 (initget "STYLE,S STEAK,ST STROKE")

 This sample has the same affect as the previous example.

How to Select Groups of Objects
AutoCAD provides the Select command to allow you to pre-select a group of objects to be edited in some way.
Select acts the same way as other commands when the Select object prompt is presented. For example, when you
issue the Move command, you are prompted to Select objects. You can then use any number of options to select
groups of objects to move. These options range from windows to single object selection or de-selection. The group
of objects you select is called a selection set.

 AutoLISP offers a similar facility in the Ssget function. You can think of ssget as an abbreviation for selection set

The ABC’s of AutoLISP by George Omura

86

Copyright © 2001 George Omura,,World rights reserved

get. When this function is used as part of an expression, the Select objects prompt appears and you can go about
selecting a single object or groups of objects to be processed by your program in much the same way as the standard
select objects prompt.

Using Ssget
The syntax for Ssget is:

 (ssget [optional selection mode][optional point][optional point])

 Three optional arguments affect the way ssget selects objects. the first option, selection mode, allows you to
predetermine the method ssget uses for selection. For example, if you want the user to use a window to select
objects, you would include the string "W" as the first argument to ssget as in the following:

 (setq obj1 (ssget "W"))

Other options are:

 "P" select a previous selection set

"L" select the last object added to database

"C" select objects using a crossing window

"X" select objects using a filter list.

 Most of these options should be familiar to you as standard selection options. The "X" mode however is probably
new to you. This mode allows you to select objects based on their properties such as layer, linetype color and so on.
We won't discuss this option until later in this book as it is rather involved.

 You can also specify points either to select objects at a known location or as input to the window or crossing mode
options. For example, if you want to select an object you know is at point 1,1, you can place the following in your
program:

 (setq obj1 (ssget '(1 1)))

You can also indicate a window by indicating two point as in the following:

(setq obj1 (ssget "W" '(1 1) '(9 12)))

 Point specification need not be in the form of a quoted list. You can supply a variable as well. Suppose two points
have been previously defined in your program:

 (setq pt1 (getpoint "Pick a point: "))

(setq Pt2 (getcorner pt1 "Pick another point: "))

.

The ABC’s of AutoLISP by George Omura

87

Copyright © 2001 George Omura,,World rights reserved

.

.

The periods in the sample above indicate other expressions in your program Later in your program, You can then
use those two point to select objects with a window:

.

.

.

(setq obj1 (ssget "W" pt1 pt2))

If you provide points as arguments, however, ssget does not pause for user input. It assumes that the points provided
as arguments indicate the location of the objects to be included in the selection set.

 Finally, if you do not provide any arguments, ssget will allow the user to select the mode of selection. If the
following appears in your program:

 (setq obj1 (ssget))

 Ssget displays the prompt:

Select objects:

 The user can either pick objects with a single pick, or enter W or C to select a standard or crossing window. The use
can also use the Remove mode to de-select objects during the selection process. In fact, all the standard object
selection options are available. When the user is done, he or she can press return to confirm the selection.

 We must caution you that AutoLISP only allows you to have six selection set variables at any given time. This
shouldn't be a problem so long as you do not make your selection set variables global. Remember that a variable is
made global by not including its symbol in the functions argument list.

A Sample Program Using Ssget
Figure 4.8 shows two AutoLISP programs. The first one called Group uses the ssget function to store a set of objects
as a group. This program is similar to the Select AutoCAD command only Group allows the user to give that
grouping a name so that it can be recalled any time during the current editing session. Also, with the Group program
in earlier versions of AutoCAD, you can only store up to 6 sets of groups. After 6, any group you try to store will
return nil. The groups saved by the Group program are not saved when you exit the file however.

The ABC’s of AutoLISP by George Omura

88

Copyright © 2001 George Omura,,World rights reserved

(defun collct ()
(if (not gp1)(setq gp1 (getstring "enter name of group: ")))
(if (<= *gpcnt 4)(setq *gplst (cons gp1 *gplst)))
(set (read gp1) (ssget))
)

(defun C:Group (/ gp1)
(if (not *gpcnt)(setq *gpcnt 0))
(setq *gpcnt (1+ *gpcnt))
(if (<= *gpcnt 4)(collct)(freegp))
(princ)
)

(defun FREEGP ()
(prompt "\nYou have exceeded the number of groups allowed: ")
(prompt "\nEnter group name to re-use ")
(princ *gplst)
(setq gp1 (getstring ": "))
(set (read gp1) nil)
(gc)
(collct)
)

Figure 4.8: Examples of Ssget

The second program called Freegp will free up memory taken by a group so that if exceed 6 selection sets, you can
remove one or more selection sets from memory to allow the use of the Group function again. It is up to you,
however, to remember the names of your groups.

1. Exit the Chapt4 file and open an AutoLISP file called Group.lsp. Copy the program shown in figure 4.4
into the file.

2. Go back to your Chapt4 AutoCAD drawing file and load Group.lsp.

3. Draw eight vertical lines in the drawing area.

4. Enter Group at the command prompt. The following prompt appears:

The ABC’s of AutoLISP by George Omura

89

Copyright © 2001 George Omura,,World rights reserved

 Enter name of group:

 5. Enter the following for a group name:

 group1

 6. The Select objects prompt appears. pick the leftmost three lines. You can use a window or pick them
individually. Once you are done selecting objects, press return. You will see a message similar to the
following:

<Selection set: n>

Command:

 The value of n will depend on the number of selection sets previously used in the current editing session.

7. Start the move command. At the Select objects prompt, enter the name of the group you selected previously:

 !group1

 The objects you picked using the Group function are highlighted just as if you had picked them manually while
in the move command.

 The Group program works by first prompting you for a name to give your group:

 (setq gp1 (getstring "enter name of group: "))

 This name is saved as a variable gp1. Next, it uses ssget to assign a selection set to a variable with the name
you entered during the previous expression.

 (set (read gp1) (ssget))

This is accomplished using the set and read functions. Read is a function that reduces a string to a symbol. When the
variable gp1 is applied to read, the string, "group1" which you entered in the previous expression, is returned as the
variable name or symbol group1. The set function then applies the selection set from the ssget function to the
symbol group1. You may recall that set works just like setq only set will evaluate both its arguments. Since set
evaluates its first argument, you can use an expression such as (read gp1) to derive a variable name .

Since the variable created using set and read is created while the program is executing, it cannot be included in the
argument list of the program. For this reason it becomes global variable.

As mentioned earlier, AutoLISP allows up to 6 selection sets to be available at once. If you try to create more than 6,
ssget will return nil instead of a selection set. Any program that uses the ssget function will not work properly once
the maximum number of concurrent selection sets is exceeded. To recover the use of ssget, you must set at least one
of the selection set variables to nil then perform what is called a "garbage collection" using the GC function. This is
precisely what the Freegp program does.

The ABC’s of AutoLISP by George Omura

90

Copyright © 2001 George Omura,,World rights reserved

 1 Enter Freegp at the command prompt. At the prompt:

Enter name of group to delete:

 2. Enter group1.

Freegp will set group1 to nil and recover any node space group1 may have take.

Freegp uses an AutoLISP function called gc. To help understand what gc does, think of nodes, portions of memory
used to store AutoLISP symbols and values, are of two types, Bound and Free. Bound nodes are those that are being
used to store symbols and value. Free nodes are unassigned. When a new symbol is created, it is assigned a free
node. That node is then bound to that symbol. Even if a symbol is eventually assigned a nil value, it will still be
bound to a node. Gc, short for garbage collection, releases node space that is bound to a symbol with a nil value.
Frequent use of Gc is not recommended, as it can be time consuming. In the case of the ssget function however, it is
the only function that will allow you to recover memory and regain ssget's use.

Conclusion
In this chapter, you were introduced to the many ways AutoLISP allows you to interact with the user to gather
information. In summary, the following points were discussed:

• Several functions allow you to pause your program to allow the user to input data.

• Many of these functions accept data either from the keyboard or from the cursor

• You can place controls on the type of data being input through the initget function.

In addition, you saw how objects can be selected using the Ssget function. Though there are only a handful of
functions that give AutoLISP its interactive capabilities, the flexibility of these functions give a complete range of
possibilities for gathering data from the user.

 In the next chapter, you will explore how you can make your program do more of your work for you by making
decisions and performing repetitive tasks.

The ABC’s of AutoLISP by George Omura

91

Copyright © 2001 George Omura,,World rights reserved

Chapter 5: Making Decisions with AutoLISP
Introduction

Making decisions

How to test for conditions

Using the If function

How to make several expressions act like one

How to test Multiple Conditions

Using the Cond Function

How to repeat parts of a program

Using the While Function

Using the Repeat Function

Using Test expressions

Conclusion

Introduction
As we mentioned in chapter 3, AutoLISP is designed to help us solve problems. One of the key elements to problem
solving is the ability to perform one task or another based on some existing condition. We might think of this ability
as a way for a program to make decisions. Another element of problem solving is repetitive computation. Something
that might be repetitive, tedious, and time consuming for the user to do may be done quickly using AutoLISP. In this
chapter, we will look at these two facilities in AutoLISP.

Making Decisions
You can use AutoLISP to create macros which are like a predetermined sequence of commands and responses. A
macro building facility alone would be quite useful but still limited. Unlike macros, AutoLISP offers the ability to
perform optional activities depending on some condition. AutoLISP offers two conditional functions that allow you
to build-in some decision making capabilities into your programs. These are the if and cond functions. If and cond
work in very similar ways with some important differences.

How to Test for Conditions
The if functions works by first testing to see if a condition is met then it performs one option or another depending
on the outcome of the test. This sequence of operations is often referred to as an if-then-else conditional statement.
if a condition is met, then perform computation A, else perform computation B. As with all else in AutoLISP, the if
function is used as the first element of an expression. It is followed by an expression that provides the test. A second

The ABC’s of AutoLISP by George Omura

92

Copyright © 2001 George Omura,,World rights reserved

and optional third argument follows the test expression. The second argument is an expressions that is to be
evaluated if the test condition is true. If the test returns false or nil, then if evaluates the third argument if it exists,
otherwise if returns nil. The following shows the general syntax of the if function.

(if (test expression)

(expression) (optional expression)

)

 The test expression can be use any function but often you will use two classes of functions called predicates and
logical operators. Predicates and logical operators are functions that return either true or false. Since these functions
don't return a value the way most functions do, the atom T is used by predicates and logical operators to represents a
non-nil or true value. There are several functions that return either a T or nil when evaluated.

FUNCTION RETURNS T (TRUE) IF...

Predicates

< a numeric value is less than another

> a numeric value is greater than another

<= a numeric value is less than or equal to another

>= a numeric value is greater than or equal to another

= two numeric or string values are equal

/= two numeric or string values are not equal

eq two values are one in the same

equal two expressions evaluate to the same value

atom an object is an atom (as opposed to a list)

boundp a symbol has a value bound to it

listp an object is a list

minusp a numeric value is negative

numberp an object is a number, real or integer

zerop an object evaluates to zero

Table 5.1 A list of AutoLISP predicates and logical operators.

The ABC’s of AutoLISP by George Omura

93

Copyright © 2001 George Omura,,World rights reserved

Logical Operators

and all of several expressions or atoms return non-nil

not a symbol is nil

null a list is nil

or one of several expressions or atoms return non-nil

Table 5.1 (continuet) A list of AutoLISP predicates and logical operators.

You may notice that several of the predicates end with a p. The p denotes the term predicate. Also note that we use
the term object in the table. When we say object, we mean any lists or atoms which include symbols and numbers.
Numeric values can be numbers or symbols that are bound to numbers.

All predicates and logical operators follow the standard format for AutoLISP expressions. They are the first element
in an expression followed by the arguments as in the following example:

(> 2 4)

The greater than predicate compares two numbers to see if the one on the left is greater than the one on the right.
The value of this expression is nil since two is not greater than four.

The predicates >,<,>=, <= all allows more than two arguments as in the following:

(> 2 1 5 8)

When more than two arguments are used, > will return T only if each value is greater than the one to is right. The
above expression returns nil since 1 is not greater than 5.

The functions and, not, null and or are similar to predicates in that they too return T or nil. But these functions,
called logical operators, are most often used to test predicates (see table 5.1). For example, you could test to see if a
value is greater than another:

(setq val1 1)

(zerop val1)

nil

The ABC’s of AutoLISP by George Omura

94

Copyright © 2001 George Omura,,World rights reserved

We set the variable val1 to 1 then test to see if val1 is equal to zero. The zerop predicate returns nil. But suppose you
want to get a true response whenever val1 does not equal zero. You could use the not logical operator to "reverse"
the result of zerop:

(setq val1 1)

(not (zerop val1))

T

Since not returns true when its argument returns nil, the end result of the test is T. Not and null can also be used as
predicates to test atoms and lists.

Using the If function
In chapter 2, you saw briefly how the if function worked with the not logical operator to determine whether to load a
program or not. Looking at that expression again (see Figure 5.1), you see a typical use of the if function.

Figure 5.1: An expression showing the syntax for the If function

This function tests to see if the function C:BOX exists. If C:BOX doesn't exist, it is loaded. This simple program
decides to load a program based on whether the program has already been loaded. The test function in this case is
not. Lets look at how you might apply if to another situation. In the following exercise, you will add an expression
to decide between drawing a 2 dimensional or 3 dimensional box.

The ABC’s of AutoLISP by George Omura

95

Copyright © 2001 George Omura,,World rights reserved

1. Open the Box1.lsp file.

2. Change the first line of the Box program so it reads as follows:

(defun BOX1 (/ pt1 pt2 pt3 pt4)

By removing the C: from the function name, Box1 now becomes a function that can be called from another
function.

3. Change the first line of the 3dbox program so it reads as follows:

(defun 3DBOX (/ pt1 pt2 pt3 pt4)

4. Add the program listed in boldface print in figure 5.2 to the end of the Box1.lsp file. Your Box1.lsp file
should look like figure 5.2. You may want to print out Box1.lsp and check it against the figure.

5. Save and Exit Box1.lsp.

6. Open an AutoCAD file called chapt5. Be sure to use the = suffix with the file name.

7. Load the box1.lsp file.

8. Run the Mainbox program by entering mainbox at the command prompt. You will see the following prompt:

Do you want a 3D box <Y=yes/Return=no>?

9. Enter y. The 3dbox function executes.

The ABC’s of AutoLISP by George Omura

96

Copyright © 2001 George Omura,,World rights reserved

(defun getinfo ()
(setq pt1 (getpoint "Pick first corner: "))
(princ "Pick opposite corner: ")
(setq pt3 (rxy))
)
 (defun procinfo ()
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
)

(defun output ()
(command "line" pt1 pt2 pt3 pt4 "c")
)

(defun BOX1 (/ pt1 pt2 pt3 pt4)
(getinfo)
(procinfo)
(output)
)
 (defun 3DBOX (/ pt1 pt2 pt3 pt4 h)
(getinfo)
(setq h (getreal "Enter height of box: "))
(procinfo)
(output)
(command "change" "L" "" "P" "th" h ""
 "3dface" pt1 pt2 pt3 pt4 ""
 "3dface" ".xy" pt1 h ".xy" pt2 h
 ".xy" pt3 h ".xy" pt4 h ""
)
)

(defun C:3DWEDGE (/ pt1 pt2 pt3 pt4 h)
(getinfo)
(setq h (getreal "Enter height of wedge: "))
(procinfo)
(output)
(command "3dface" pt1 pt4 ".xy" pt4 h ".xy" pt1 h pt2 pt3 ""
 "3dface" pt1 pt2 ".xy" pt1 h pt1 ""
 "copy" "L" "" pt1 pt4
)
)
(defun C:MAINBOX ()
(setq choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))
 (if (or (equal choose "y")(equal choose "Y"))(3dbox)(box1))
)

Figure 5.2: The BOX1.LSP file with C:MAINBOX added.

The ABC’s of AutoLISP by George Omura

97

Copyright © 2001 George Omura,,World rights reserved

In this example, you first turned the programs C:BOX1 and C:3DBOX into functions by removing the C: from their
names. Next, you created a control program called C:MAINBOX that prompts the user to choose between a 2
dimensional or 3 dimensional box. The first line in the C:MAINBOX program, as usual, gives the program its name
and determines the local variables. The next line uses the Getstring function to obtain a string value in response to a
prompt:

(setq choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))

The prompt asks the user if he or she wants a 3 dimensional box and offers the user two options, Y for yes or Return
for no. The third line uses the if function to determine whether to run the BOX1 or 3DBOX function. Notice that the
or and the equal predicates are used together.

(if (or (equal choose "y")(equal choose "Y"))(3dbox)(box1))

The or function returns T if any of its arguments returns anything other than nil. Two arguments are provided to or.
One test to see of the variable choose is equal to the lower case y while the other checks to see if choose is equal to
an upper case y. If the value of either expression is T, then or returns T. So, if the user responds by entering either an
upper or lower case y to the prompt in the second line, then the or predicate returns T. Any other value for choose
will result in a nil value from or (see figure 5.3).

Figure 5.3: Using the logical operator Or

The ABC’s of AutoLISP by George Omura

98

Copyright © 2001 George Omura,,World rights reserved

Once the or function returns a T, the second argument is evaluated which means that a 3dbox is drawn. If or returns
nil, then the third argument is evaluated drawing a 2 dimensional box. The and function works in a similar way to
or but and requires that all its arguments return non-nil before it returns T. Both or and will accept more that two
arguments.

How to Make Several Expressions Act like One
There will be times when you will want several expressions to be evaluated depending on the results of a predicate.
As an example, lets assume that you have decided to make the 2 dimensional and 3 dimensional box programs part
of the C:MAINBOX program to save memory. You could place the code for these functions directly in the
C:MAINBOX program and have a file that looks like figure 5.5. When this program is run, it acts exactly the same
way as in the previous exercise. But in figure 5.4, the functions BOX1 and 3DBOX are incorporated into the if
expression as arguments.

(defun C:MAINBOX (/ pt1 pt2 pt3 pt4 h choose)
(setq choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))
 (if (or (equal choose "y")(equal choose "Y"))
 (progn ;if choose = Y or y then draw a 3D
box
 (getinfo)
 (setq h (getreal "Enter height of box: "))
 (procinfo)
 (output)
 (command "change" "Last" "" "Properties" "thickness" h ""
 "3dface" pt1 pt2 pt3 pt4 ""
 "3dface" ".xy" pt1 h ".xy" pt2 h
 ".xy" pt3 h ".xy" pt4 h ""
);end command
);end progn
 (progn ;if choose /= Y or y then draw a 2D box
 (getinfo)
 (procinfo)
 (output)
);end progn
);end if
);end MAINBOX

Figure 5.4: The C;Mainbox program incorporating the code from Box1 and 3dbox

The ABC’s of AutoLISP by George Omura

99

Copyright © 2001 George Omura,,World rights reserved

Figure 5.5: Using the progn function

We are able to do this using the progn function. Progn allows you to have several expression where only one is
expected. Its syntax is as follows:

(progn

(expression1) (expression2) (expression3) . . .

)

The ABC’s of AutoLISP by George Omura

100

Copyright © 2001 George Omura,,World rights reserved

Figure 5.5 shows how we arrived at the program in figure 5.4. The calls to functions BOX1 and 3DBOX were
replaced by the actual expressions used in those functions.

How to Test Multiple Conditions
There is also another function that acts very much like the if function called Cond. Arguments to cond consists of
one or more expressions that have as their first element a test expression followed by an object that is to be
evaluated if the test returns T. Cond evaluates each test until it comes to one that returns T. It then evaluates the
expression or atom associated with that test. If other test expressions follow, they are ignored.

Using the Cond function
The syntax for cond is:

 (cond

((test expression)[expression/atom][expression/atom]...)

((test expression)[expression/atom][expression/atom]...)

((test expression)[expression/atom][expression/atom]...)

((test expression)[expression/atom][expression/atom]...)

)

 Figure 5.6 shows the cond function used in place of the if function. Cond's syntax also allows for more than one
expression for each test expression. This means that you don't have to use the Progn function with cond if you want
several expressions evaluated as a result of a test.

(defun C:MAINBOX (/ choose)
(setq choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))
 (cond
 ((or (equal choose "y") (equal choose "Y")) (3dbox))
 ((or (/= choose "y") (/= choose "Y")) (box1))
)
)

Figure 5.6: Using cond in place of if

The ABC’s of AutoLISP by George Omura

101

Copyright © 2001 George Omura,,World rights reserved

Figure 5.7 shows another program called Chaos that uses the Cond function. Chaos is an AutoLISP version of a
mathematical game used to demonstrate the creation of fractals through an iterated function. The game works by
following the steps shown in Figure 5.8.

;function to find the midpoint between two points
(defun mid (a b)
(list (/ (+ (car a)(car b)) 2)
(/ (+ (cadr a)(cadr b)) 2)
)
)

;function to generate random number
(defun rand (pt / rns rleng lastrn)
(setq rns (rtos (* (car pt)(cadr pt)(getvar "tdusrtimer"))))
(setq rnleng (strlen rns))
(setq lastrn (substr rns rnleng 1))
(setq rn (* 0.6 (atof lastrn)))
(fix rn)
)

;The Chaos game
(defun C:CHAOS (/ pta ptb ptc rn count lastpt randn key)
(setq pta '(2.0000 1)) ;define point a
(setq ptb '(7.1962 10)) ;define point b
(setq ptc '(12.3923 1)) ;define point c
(setq lastpt (getpoint "Pick a start point:")) ;pick a point to start
 (while (/= key 3) ;while pick button not pushed
 (setq randn (rand lastpt)) ;get random number
 (cond ;find midpoint to a b or c
 ((= randn 0)(setq lastpt (mid lastpt pta))) ;use corner a if 0
 ((= randn 1)(setq lastpt (mid lastpt pta))) ;use corner a if 1
 ((= randn 2)(setq lastpt (mid lastpt ptb))) ;use corner b if 2
 ((= randn 3)(setq lastpt (mid lastpt ptb))) ;use corner b if 3
 ((= randn 4)(setq lastpt (mid lastpt ptc))) ;use corner c if 4
 ((= randn 5)(setq lastpt (mid lastpt ptc))) ;use corner c if 5
);end cond
 (grdraw lastpt lastpt 5) ;draw midpoint
 (setq key (car (grread T))) ;test for pick
);end while
);end Chaos

Figure 5.7: The Chaos game program

The ABC’s of AutoLISP by George Omura

102

Copyright © 2001 George Omura,,World rights reserved

Cond can be used anywhere you would use if. For example:

 (if (not C:BOX) (load "box") (princ "Box is already loaded. "))

can be written:

(cond

((not C:BOX) (load "box"))

((not (not C:BOX)) (princ "Box is already loaded. "))

)

Figure 5.8: How to play the Chaos game

The ABC’s of AutoLISP by George Omura

103

Copyright © 2001 George Omura,,World rights reserved

Cond is actually the primary conditional function of AutoLISP. The if function is offered as an alternative to cond
since it is similar to conditional functions used in other programming languages. Since the If function syntax is
simpler and often more readable, you may want to use if where the special features of cond are not required.

How to Repeat parts of a Program
Another useful aspect to programs such as AutoLISP is their ability to perform repetitive tasks. For example,
suppose you want to be able to record a series of keyboard entries as a macro. One way to do this would be to use a
series of Getstring functions as in the following:

(Setq str1 (getstring "\nEnter macro: "))

(Setq str2 (getstring "\nEnter macro: "))

(Setq str3 (getstring "\nEnter macro: "))

(Setq str4 (getstring "\nEnter macro: "))

.

Each of the str variables would then be combined to form a variable storing the keystrokes. Unfortunately, this
method is inflexible. It requires that the user input a fixed number of entries, no more and no less. Also, this method
would use memory storing each keyboard entry as a single variable.

 It would be better if you had some facility to continually read keyboard input regardless of how few or how many
different keyboard entries are supplied. The While function can be used to repeat a prompt and obtain data from the
user until some test condition is met. The program in figure 5.9 is a keyboard macro program that uses the while
function.

;Program to create keyboard macros -- Macro.lsp

(defun C:MACRO (/ str1 macro macname)
(setq macro '(command)) ;start list with command
(setq macname (getstring "\nEnter name of macro: ")) ;get name of macro
 (while (/= str1 "/") ;do while str1 not eq.
 (setq str1 (getstring "\nEnter macro or / to exit: ")) ;get keystrokes
 (if (= str1 "/")

 (princ "\nEnd of macro ") ;if / then print message
 (Setq macro (append macro (list str1)) ;else append keystrokes
) ;end if macro list
);end while
(eval (list 'defun (read macname) '() macro)) ;create function
);end macro

Figure 5.9: A program to create keyboard macros

The ABC’s of AutoLISP by George Omura

104

Copyright © 2001 George Omura,,World rights reserved

Using the While Function
The syntax for while is:

(while (test expression)

(expression 1)(expression 2)(expression 3)

)

The first argument to while is a test expression. Any number of expressions can follow. These following expressions
are evaluated if the test returns a non-nil value.

Open an AutoLISP file called Macro.lsp and copy the contents of figure 5.8 into this file. Since this is a larger
program file than you worked with previously, you may want to make a print out of it and check your print out
against figure 5.8 to make sure you haven't made any transcription errors. Go back to your AutoCAD Chapt5 file.
Now you will use the macro program to create a keyboard macro that changes the last object drawn to a layer called
hidden. Do the following:

1. Draw a diagonal line from the lower left corner of the drawing area to the upper right corner.

2. Load the Macro.lsp file

3. Enter Macro at the command prompt.

4. At the following prompt:

Enter name of macro:

5. Enter the word chlt. At the prompt:

Enter macro or / to exit:

6. Enter the word CHANGE.
The Enter macro prompt appears again. Enter the following series of words at each Enter macro prompt:

Enter macro or / to exit: L

Enter macro or / to exit: [press return]

Enter macro or / to exit: P

Enter macro or / to exit: LT

The ABC’s of AutoLISP by George Omura

105

Copyright © 2001 George Omura,,World rights reserved

Enter macro or / to exit: HIDDEN

Enter macro or / to exit: [press return]

Enter macro or / to exit: /

This is where the while function takes action. As you enter each response to the Enter macro prompt, while test to
see if you entered a forward slash. If not, it evaluates the expressions included as its arguments. Once you enter the
backslash, while stops its repetition. You get the prompt:

End of macro CLAYER

The input you gave to the Enter macro prompt is exactly what you would enter if you had used the change command
normally. Now run your macro by entering:

chlt

The line you drew changes to the hidden line type.

When Macro starts, it first defines two variables def and macro.

(setq def "defun ")

(setq macro '(command))

Def is a string variable that is used later to define the macro. Macro is the beginning of a list variable which is used
to store the keystrokes of the macro. The next line prompts the user to enter a name for the macro.

(setq macname (getstring "\nEnter name of macro: "))

The entered name is then stored with the variable macname. Finally, we come to the while function.

(while (/= str1 "/")

The while expression is broken into several lines. The first line contains the actual while function along with the test
expression. In this case, the test compares the variable str1 with the string "/" to see if they are not equal. So long as
str1 is not equal to "/", while will execute the arguments that follow the test. The next four lines are the expressions
to be evaluated. The first of these lines prompts the user to enter the text that compose the macro.

(setq str1 (getstring "\nEnter macro or / to exit: "))

When the user enters a value at this prompt, it is assigned to the variable str1. The next line uses an if function to test
if str1 is equal to "/".

(if (= str1 "/")

If the test results in T, the next line prints the string End of macro.

The ABC’s of AutoLISP by George Omura

106

Copyright © 2001 George Omura,,World rights reserved

(princ "\nEnd of macro ")

This expression prints the prompt End of macro to the prompt line. If the test results in nil, the following line
appends the value of str1 to the existing list macro.

(Setq macro (append macro (list str1)))

The append function takes one list and appends its contents to the end of another list. In this case, whatever is
entered at the Enter macro prompt is appended to the variable macro. Each time a new value is entered at the Enter
macro prompt, it is appended to the variable macro creating a list of keyboard entries to be saved (see figure 5.10).

Figure 5.10: Appending lists to other lists

The next two lines close the if and while expressions. Note that comments are used to help make the program easier
to understand.

The ABC’s of AutoLISP by George Omura

107

Copyright © 2001 George Omura,,World rights reserved

);end if

);end while

The last line combines all the elements of the program into an expression that, when evaluated, creates a new macro
program.

(eval (list (read def) (read macname) '() macro))

)

Figure 5.11 shows gives breakdown of how this last line works.

Figure 5.11: How the macro is defined

The read function used in this expression is a special function that converts a string value into a symbol. If a string
argument to read contains spaces, read will convert the first part of the string and ignore everything after the space.

The ABC’s of AutoLISP by George Omura

108

Copyright © 2001 George Omura,,World rights reserved

The while expression does not always include prompts for user input. Figure 5.12 shows a simple program that
inserts a sequence of numbers in increasing value. Each number is increased by one and they are spaces 0.5 units
apart. The user is prompted for a starting point and a first and last number. Once the user inputs this information, the
program calculates the number to be inserted, inserts the number using the text command, calculates the next
number and so on until the last number is reached.

;Program to draw sequential numbers -- Seq.lsp
(defun C:SEQ (/ pt1 currnt last)
(setq pt1 (getpoint "\nPick start point: "))
(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))
(command "text" pt1 "" "" currnt) ;write first number
 (while (< currnt last) ;while not last number
 (setq currnt (1+ currnt)) ;get next number
 (command "text" "@.5<0" "" "" currnt) ;write value of currnt
);end while
);end seq

Figure 5.12: Sequential number program

This program expects the current text style to have a height of 0.

Using the Repeat Function
Another function that performs recursions is the repeat function. Repeat works in a similar way to While but instead
of using a predicate to determine whether to evaluate its arguments, repeat uses an integer value to determine the
number of times to perform an evaluation. The syntax for repeat is:

(repeat [n]

(expression 1)(expression 2) (expression 3) ...

)

The n above is an integer or a symbols representing an integer.

The ABC’s of AutoLISP by George Omura

109

Copyright © 2001 George Omura,,World rights reserved

The program in Figure 5.13 shows the sequential number program using repeat instead of while. When run, this
program appears to the user to act in the same way as the program that uses while.

;Program to write sequential numbers using Repeat
(defun C:SEQ (/ pt1 currnt last)
(setq pt1 (getpoint "\nPick start point: "))
(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))
(command "text" pt1 "" "" currnt) ;write first number
 (repeat (- last currnt) ;repeat last - currnt times
 (setq currnt (1+ currnt)) ;add 1 to currnt
 (command "text" "@.5<0" "" "" currnt) ;write value of currnt
);end repeat
);end seq

Figure 5.13: Sequential number program using repeat

Using Test Expressions
So far, we have shown you functions that perform evaluations based on the result of some test. In all the examples,
we use predicates and logical operators for testing values. While predicates and logical operators are most
commonly used for tests, you are not strictly limited to these functions. Any expression that can evaluate to nil can
also be used as a test expression. Since virtually all expressions are capable of returning nil, you can use almost any
expression as a test expression. The following function demonstrates this point:

(defun MDIST (/ dstlst dst)

(setq dstlst '(+ 0))

(while (setq dst (getdist "\nPick distance or Return to exit: "))

(Setq dstlst (append dstlst (list dst)))

(princ (Eval dstlst))

);end while

);end MDIST

The ABC’s of AutoLISP by George Omura

110

Copyright © 2001 George Omura,,World rights reserved

This function gives the user a running tally of distances. The user is prompted to pick a distance or press Return to
exit. if a point is picked, the user is prompted for a second point. The distance between these two points is displayed
on the prompt. The Pick distance prompt appears again and if the user picks another pair of points, the second
distance is added to the first and the total distance is displayed. This continues until the user presses return. The
following discussion examines how this function works.

 As usual, the first line defines the function. The second line creates a variable called dstlst and gives it the list value
(+ 0).

(defun MDIST (/ dstlst dst)

(setq dstlst '(+ 0))

The next line begins the while portion of the program. Instead of a predicate test, however, this expression uses a
setq function.

(while (setq dst (getdist "\nPick point or Return to exit: "))

As long as points are being picked, getdist returns a non-nil value to setq and while repeats the evaluation of its
arguments. When the user presses return, getdist returns nil and while quits evaluating its arguments. We see that
while is really only concerned with nil and non-nil since the test expression in this example returns a value other
than T.

The next few lines append the current distance to the list dstlst then evaluates the list to obtain a total:

(Setq dstlst (append dstlst (list dst)))

(princ (eval dstlst))

The function princ prints the value obtained from (eval dstlst) to the prompt (see Figure 5.14).

;Program to measure non-sequential distances -- Mdist.lsp
(Defun C:MDIST (/ dstlst dst)
(setq dstlst '(+)) ;create list with plus
;while a return is not entered ...
 (while (setq dst (getdist "\nPick point or Return to exit: "))
 (Setq dstlst (append dstlst (list dst))) ;append distance value
 (princ (Eval dstlst)) ;print value of list
);end while
);end mdist

Figure 5.14: The Mdist function

The ABC’s of AutoLISP by George Omura

111

Copyright © 2001 George Omura,,World rights reserved

Conclusion
You have been introduced to several of the most useful functions available in AutoLISP. You can now begin to
create functions and programs that will perform time consuming, repetitive tasks quickly and easily. You can also
build-in some intelligence to your programs by using decision making functions. You may want to try your hand at
modifying the programs in this chapter. For example, you could try to modify the Mdist function to save the total
distance as a global variable you can later recall.

In the next chapter, you will get a brief refresher course in geometry.

The ABC’s of AutoLISP by George Omura

112

Copyright © 2001 George Omura,,World rights reserved

Chapter 6: Working With Geometry
Introduction

How to Find Angles and Distances

Understanding the Angle, Distance, and Polar Function

Using Trigonometry to Solve a Problem

Gathering Information

Finding Points Using Trigonometry

Conclusion

Introduction
It is inevitable that your work with AutoLISP will involve some geometric manipulations. With the box program in
chapter 2, you have already created a program that derives new point locations based on user input. There, you
learned how to take coordinate lists apart, then re-assemble them to produce a new coordinate. In this chapter, you
will be introduced to other AutoLISP functions that will help you determine locations in your drawings coordinate
system and in the process, you will review some basic trigonometry.

How to find Angles and Distances
In chapter 4, you learned how to prompt the user for angles and distances. At time, however, you will want to find
angles and distances based on the location of existing point variables rather than relying on user input every time
you need to find an angle.

Suppose you want to find a way to break two parallel lines between two points in a manner similar to the standard
AutoCAD break command. In addition, you would like this function to join the ends of the two broken portions of
each line to form an opening. Figure 6.1 shows a drawing of the process along with a description of what must
occur. This drawing can be developed into pseudocode for your program. A function similar to this is commonly
used in architectural drawings to place an opening in a wall.

The ABC’s of AutoLISP by George Omura

113

Copyright © 2001 George Omura,,World rights reserved

Figure 6.1: Sketch of the parallel line break program

In Chapter 3, we discussed the importance of designing your program to be simple to use. This program is designed

The ABC’s of AutoLISP by George Omura

114

Copyright © 2001 George Omura,,World rights reserved

to obtain the information needed to perform its task using the minimum of user input. Since it is similar to the break
command, it also tries to mimic the break program to some degree so the user feels comfortable with it. As you read
through this section, pay special attention to the way information is gathered and used to accomplish the final result.

Open an AutoLISP file called Break2.lsp and copy the program in figure 6.2. Open a new AutoCAD file called
Chapt6. Draw a line from point 2,4 to 12,4 then offset that line a distance of 0.25 units. Your screen should look like
figure 6.3.

;Program to break 2 parallel lines -- Break2.lsp
(defun c:break2 (/ pt1 pt2 pt3 pt4 pt0 ang1 dst1)
 (setvar "osmode" 512) ;near osnap mode
 (setq pt1 (getpoint "\nSelect object: ")) ;get first break point
 (setq pt2 (getpoint pt1 "\nEnter second point: ")) ;get second break point
 (setvar "osmode" 128) ;perpend osnap mode
 (Setq pt3 (getpoint pt1 "\nSelect parallel line: "));get 2nd line
 (Setvar "osmode" 0) ;no osnap mode
 (setq ang1 (angle pt1 pt3)) ;find angle btwn lines
 (setq dst1 (distance pt1 pt3)) ;find dist. btwn lines
 (setq pt4 (polar pt2 ang1 dst1)) ;derive pt4 on 2nd line
 (command
 "break" pt1 pt2 ;break 1st line
 "break" pt3 pt4 ;break 2nd line
 "line" pt1 pt3 "" ;close ends of lines
 "line" pt2 pt4 ""
)
)

Figure 6.2: The parallel line break program

The ABC’s of AutoLISP by George Omura

115

Copyright © 2001 George Omura,,World rights reserved

Figure 6.3: Two parallel lines drawn

1. Load the Break2.lsp file and enter break2 at the Command prompt.

2. At the prompt:

Select object:

The osnap cursor appears. Pick the lowermost line near coordinate 5,4.

3. At the next prompt:

Enter second point:

Pick the lowermost line again near coordinate 10,4.

4. Finally, at the prompt:

Select parallel line:

The ABC’s of AutoLISP by George Omura

116

Copyright © 2001 George Omura,,World rights reserved

pick the upper line near its midpoint. The two line break and are joined at their break points to form an opening
(see figure 6.4)

Figure 6.4: The lines after using Break2

Now draw several parallel lines at different orientations and try the Break2 program on each pair of lines. Break2
places an opening in a pair of parallel lines regardless of their orientation. Let's look at how break2 accomplishes
this.

Understanding the Angle, Distance, and Polar Functions
The first line after defun function uses the setvar function to set the osnap system variable to the nearest mode.

(defun C:BREAK2 (/ pt1 pt2 pt3 pt4 pt0 ang1 dst1)

The ABC’s of AutoLISP by George Omura

117

Copyright © 2001 George Omura,,World rights reserved

(setvar "osmode" 512)

This ensures that the point the user picks at the next prompt is exactly on the line. It also give the user a visual cue to
pick something since the osnap cursor appears.

When setvar is used with the osmode system variable, a numeric code must also be supplied. This code determines
the osnap mode to be used. Table 6.1 shows a list of the codes and their meaning.

Code Equivalent Osnap mode

1 Endpoint

2 Midpoint

4 Center

8 Node

16 Quadrant

32 Intersection

64 Insertion

128 Perpendicular

256 Tangent

512 Nearest

1024 Quick

Table 6.1: Osmode codes and their meaning

The next line prompts the user to select an object using the getpoint function:

(setq pt1 (getpoint "\nSelect object: "))

Here, the variable pt1 is used to store the first point location for the break. Since the nearest osnap mode is used, the
osnap cursor appears and the point picked falls exactly on the line (see Figure 6.5).

The ABC’s of AutoLISP by George Omura

118

Copyright © 2001 George Omura,,World rights reserved

Figure 6.5: Getting a point using the "nearest" osnap mode.

Next, another prompt asks the user to pick another point:

(setq pt2 (getpoint pt1 "\nEnter second point: "))

The variable pt2 is assigned a point location for the other end of the break. The next line:

(setvar "osmode" 128)

sets the osnap mode to perpendicular in preparation for the next prompt:

(Setq pt3 (getpoint pt1 "\nSelect parallel line: "))

The ABC’s of AutoLISP by George Omura

119

Copyright © 2001 George Omura,,World rights reserved

Here, the user is asked to select the line parallel to the first line. The user can pick any point along the parallel line
and the perpendicular osnap mode ensures that the point picked on the parallel line is "perpendicular" to the first
point stored by the variable pt1. The perpendicular osnap mode will only work, however, if a point argument is
supplied to the Getpoint function. In this case, the point pt1 is supplied as a reference from which the perpendicular
location is to be found (see figure 6.6). This new point variable pt3 will be important in calculating the location of
the two break points on the parallel line.

Figure 6.6: Picking the point perpendicular to the first point.

The ABC’s of AutoLISP by George Omura

120

Copyright © 2001 George Omura,,World rights reserved

The next line sets the osnap mode back to "none":

(Setvar "osmode" 0)

The next two lines find the angle and distance described by the two point variables pt1 and pt3.

(setq ang1 (angle pt1 pt3))

(setq dst1 (distance pt1 pt3))

You can obtain the angle described by two points using the Angle function. Angles syntax is:

(angle [coordinate list][coordinate list])

The arguments to angle are always coordinate lists. The lists can either be variables or quoted lists.

Angle returns a value in radians. You looked at radians briefly in chapter 4. A radian is system to measure angles
based on a circle of 1 unit radius. In such a circle, an angle can be described as a distance along the circle's
circumference. You may recall from high school geometry that a circle's circumference is equal to 2 times pi times
its radius. since the hypothetical circle has a radius of 1, we drop the one from the equation.

circumference = 2pi

90 degrees is equal to one quarter the circumference of the circle or pi/2 radians or 1.5708 (see figure 6.7). 180
degrees is equal to half the circumference of a circle or 1 pi radians or 3.14159. 360 degrees is equal the full
circumference of the circle or to 2 pi radians or 6.28319.

A simple formula to convert degrees to radians is:

radians * 57.2958

To convert degrees to radians the formula is:

degrees * 0.0174533

Angle uses the current UCS orientation as its basis for determining angles. Though you can supply 3 dimensional
point values to angle, the angle returned is based on a 2 dimensional projection of those points on the current UCS
(see figure 6.7). Finally, radians are always measured with a counterclockwise directions being positive.

The ABC’s of AutoLISP by George Omura

121

Copyright © 2001 George Omura,,World rights reserved

Figure 6.7: Degrees and radians

The distance function is similar to angle in that it requires two point lists for arguments:

(distance [coordinate list][coordinate list])

The value returned by distance is in drawing units regardless of the current unit style setting. This means that if you
have the units set to Architectural, distance will return distances in one inch units.

By storing the angle and distance values between pt1 and pt3, the program can now determine the location of the
second break point on the parallel line. This is done by applying this angle and distance information to the second
break point of the first line using the following expression:

(setq pt4 (polar pt2 ang1 dst1))

Here the angle variable ang1 and the distance variable dst1 are used as arguments to the polar function to find a
point pt4. Polar returns a point value (see figure 6.8).

The ABC’s of AutoLISP by George Omura

122

Copyright © 2001 George Omura,,World rights reserved

Figure 6.8: Using the polar function to find a new point.

The ABC’s of AutoLISP by George Omura

123

Copyright © 2001 George Omura,,World rights reserved

The syntax for polar is:

(polar [point value][angle in radians][distance])

Polar is used to find relative point locations. It requires a point value as its first argument followed by an angle and
distance value. The new point value is calculated by applying the angle and distance to the point value supplied.
This is similar to describing a relative location in AutoCAD using the at sign. For example, to describe a relative
location of .25 units at 90 degrees from the last point entered you would enter the following in AutoCAD:

@.25<90

The same relative location would look like the following using the polar function:

(setq pt1 (getvar "lastpoint"))

(polar pt1 1.5708 .25)

The first expression in this example uses the getvar function to obtain the last point selected. Setq then assigns that
point to the variable pt1. Polar is used in the next line to find a point that is 1.5708 radians (45 degrees) and 2 units
away from the lastpoint.

The last several lines of the Break2 program use all the point variables to first break the two lines then draw the
joining lines between them.

(command

"break" pt1 pt2

"break" pt3 pt4

"line" pt1 pt3 ""

"line" pt2 pt4 ""

)

)

In the Break2 program, you could have used the getdist and getangle functions but to do so would mean including an
additional prompt. By using the combination of the perpend osnap mode along with the getpoint function, you
establishes a point value from which both the angle and distance value is derived. In general, if you know that you
will need to gather both distance and angle information, it is better to establish coordinate variables first then derive
angles and distances from those coordinates using the distance and angle functions.

Using Trigonometry to Solve a Problem
The Break2 function is relatively simple as far as its manipulation of data is concerned. But at times, you will need
to enlist the aid of some basic trigonometric functions to solve problems. Suppose you want a function that will cut a

The ABC’s of AutoLISP by George Omura

124

Copyright © 2001 George Omura,,World rights reserved

circle along an axis defined by the user. Figure 6.9 shows a sketch along with a written description of a program that
does this.

Figure 6.9: Sketch of circle cutting program.

This program makes use of the Pythagorean Theorem as well as the Sine trigonometric function as you will see in
the next section.

Gathering Information
Before a problem can be solved, you must first gather all the known factors affecting the problem. The program you
will explore next will give an example of how you might go about your information gathering.

Exit AutoCAD and open an AutoLISP file called Cutcr.lsp. Carefully copy the program in figure 6.10 into this file.
Save and exit the Cutcr.lsp file then start AutoCAD and open the Chapt6 file again. Load the Ctcr.lsp fine then do
the following:

1. Erase everything on the screen then draw a circle with its center at point 8,6 and a with a radius of 3 units
(see figure 6.11).

2. Enter cutcr at the command prompt to start the C:CUTCR program.

The ABC’s of AutoLISP by George Omura

125

Copyright © 2001 George Omura,,World rights reserved

3 At the prompt:

Pick circle to cut:

pick the circle you just drew.

4. At the next prompt:

Pick first point of cut line:

pick a point at coordinate 5,9.

5. At the prompt:

Pick second point:

pick a point at coordinate 8,2.

The circle is cut into two arcs along the axis represented by the two points you picked (see figure6.12).

6. Use the erase command to erase the left half of the circle. You can now see that the circle has been cut
(see figure 6.13).

;Program to cut a circle into two arcs -- Cutcr.lsp
(defun C:CUTCR (/ cpt1 lpt1 lpt2 cent rad1 ang1
 dst1 dst2 cord ang2 wkpt cpt2 cpt3)
 (setvar "osmode" 512) ;osnap to nearest
 (setq cpt1 (getpoint "\nPick circle to cut: ")) ;find point on circle
 (setvar "osmode" 0) ;osnap to none
 (setq lpt1 (getpoint "\nPick first point of cut line: ")) ;1st point of cut
 (setq lpt2 (getpoint lpt1 "\nPick second point: ")) ;2nd point of cut
 (setq cent (osnap cpt1 "center")) ;find center pt
 (setq rad1 (distance cpt1 cent)) ;find radius of circle
 (setq ang1 (- (angle lpt1 cent)(angle lpt1 lpt2))) ;find difference of angles
 (setq dst1 (distance lpt1 cent)) ;find dist.lpt1 to cent
 (setq dst2 (* dst1 (sin ang1))) ;find side of triangle
 (setq cord (sqrt(-(* rad1 rad1)(* dst2 dst2)))) ;find half cord
 (setq ang2 (- (angle lpt1 lpt2) 1.57)) ;find perpend angle
 (setq wkpt (polar cent ang2 dst2)) ;find workpoint
 (setq cpt2 (polar wkpt (angle lpt1 lpt2) cord)) ;find first intersect
 (setq cpt3 (polar wkpt (angle lpt2 lpt1) cord)) ;find second intersect
 (command "erase" cpt1 "" ;erase circle
 "arc" "c" cent cpt2 cpt3 ;draw first circle seg.
 "arc" "c" cent cpt3 cpt2 ;draw second circle seg.
) ;close command funct.
) ;close defun

Figure 6.10: The circle cut program

The ABC’s of AutoLISP by George Omura

126

Copyright © 2001 George Omura,,World rights reserved

Figure 6.11: The circle drawn in AutoCAD

Figure 6.12: Drawing the cut axis.

The ABC’s of AutoLISP by George Omura

127

Copyright © 2001 George Omura,,World rights reserved

Figure 6.13: Erasing one part of the circle after it has been cut.

The first three expressions in the program after the defun functions and its arguments obtain a point on the circle:

(setvar "osmode" 512)

(setq cpt1 (getpoint "\nPick circle to cut: "))

(setvar "osmode" 0)

The setvar function sets osnap to the nearest mode then the user is prompted to pick the circle to cut. This point is
stored as cpt1. The osnap mode ensures that the point picked is exactly on the circle. Later, this point will be used to
both erase the circle and to find the circles center. The next function sets osnap back to none.

The next two lines prompt the user to select the points that define the axis along which the circle is to be cut:

(setq lpt1 (getpoint "\npick first point of cut line: "))

(setq lpt2 (getpoint lpt1 "\nPick second point: "))

The getpoint function is used in both these expressions to obtain the endpoints of the cut axis. These endpoints are
stored as lpt1 and lpt2.

The next expression uses a new function called osnap:

The ABC’s of AutoLISP by George Omura

128

Copyright © 2001 George Omura,,World rights reserved

(setq cent (osnap cpt1 "center"))

Here the point picked previously as the point on the circle cpt1 is used in conjunction with the osnap function to
obtain the center point of the circle. The syntax for osnap is:

(osnap [point value][osnap mode])

The osnap function acts in the same way as the osnap overrides. If you use the center osnap override and pick a
point on the circle, you get the center of the circle. Likewise, the osnap function takes a point value and applies an
osnap mode to it to obtain a point. In this case, osnap applies the center override to the point cpt1 which is located
on the circle. This gives us the center of the circle which is assigned to the symbol cent.

 The next expression obtains the circle's radius

(setq rad1 (distance cpt1 cent))

The distance function is used to get the distance from cpt1, the point located on the circle, to cent, the center of the
circle. This value is assigned to the symbol rad1.

Finding Points Using Trigonometry
At this point, we have all the known points we can obtain without utilizing some math. ultimately, we want to find
the intersection point between the circle and the cut axis. By using the basic trigonometric functions, we can derive
the relationship between the sides of triangle. In particular, we want to look for triangles that contain right angles. If
we analyze the known elements to our problem, we can see that two triangles can be used to find one intersection on
the circle (See figure 6.14)

Figure 6.14: Triangles used to find the intersection

The ABC’s of AutoLISP by George Omura

129

Copyright © 2001 George Omura,,World rights reserved

In our analysis, we see that we can find a point along the cut axis that describes the corner of a right triangle. To find
this point, we only need an angle and the length of the hypotenuse of the triangle. We can then apply one of the
basic trigonometric functions shown in figure 6.15 to our problem.

Figure 6.15: Basic trigonometric functions

The sine function is the best match to information we have.

sine(angle) = opposite side / hypotenuse

This formula has to be modified using some basic algebra to suite our needs:

opposite side = hypotenuse * sine (angle)

Before we can use the sine function, we need to find the angle formed by points lpt1, lpt2 and cent (see figure 6.16).

Figure 6.16: Angle needed to before the sine function can be used.

The ABC’s of AutoLISP by George Omura

130

Copyright © 2001 George Omura,,World rights reserved

The following function does this for us:

(setq ang1 (- (angle lpt1 cent) (angle lpt1 lpt2)))

The first of these three functions finds the angle described by points lpt1 and lpt1. The second expression finds the
angle from lpt1 to the center of the circle. The third line finds the difference between these two angles to give us the
angle of the triangle we need (see figure 6.17).

Figure 6.17: The sine expression written to accommodate the known elements.

We also need the length of the hypotenuse of the triangle. this can be gotten by finding the distance between lpt1
and the center of the triangle:

(setq dst1 (distance lpt1 cent))

The length of the hypotenuse is saved as the variable dst1. We can now apply our angle and hypotenuse to the
formula:

opposite side = hypotenuse * sine (angle) becomes

(setq dst2 (* dst1 (sin ang1)))

Now we have the length of the side of the triangle but we need to know the direction of that side in order to find the
corner point of the triangle. We already know that the direction is at a right angle to the cut axis. therefore, we can
determine the right angle to the cut axis by adding the cut axis angle to 1.57 radians (90 degrees)(see figure 6.18).
The following expression does this for us:

(setq ang2 (- (angle lpt1 lpt2) 1.57))

The ABC’s of AutoLISP by George Omura

131

Copyright © 2001 George Omura,,World rights reserved

Figure 6.18: Finding the angle of the opposite side of the triangle.

We are now able to place the missing corner of the triangle using the polar function (see figure 6.19).

(setq wkpt (polar cent ang2 dst2))

Figure 6.19: Finding the workpoint wkpt.

The ABC’s of AutoLISP by George Omura

132

Copyright © 2001 George Omura,,World rights reserved

We assign the corner point location to the variable wkpt. We're still not finished with our little math exercise,
however. We still need to find the intersection of the cut axis to the circle. Looking at our problem solving sketch,
we can see that yet another triangle can be used to solve our problem. We know that the intersection lies along the
cut axis. We can describe a triangle whose corner is defined by the intersection of the circle and the cut axis (see
figure 6.20).

Figure 6.20: The triangle describing one intersection point.

We also already know two of the sides of this new triangle. One is the radius of the circle stored as the variable rad1.
The other is the side of the triangle we used earlier stored as the variable dst2. The most direct way to find the
intersection is to apply the Pythagorean Theorem shown in figure 6.21.

Figure 6.21: The Pythagorean Theorem

The ABC’s of AutoLISP by George Omura

133

Copyright © 2001 George Omura,,World rights reserved

Again we must apply algebra to derive a formula to suite our needs. The formula:

c2 = a2 - b2

becomes the expression:

(setq cord (sqrt(-(* rad1 rad1)(* dst2 dst2))))

We assign the distance value gotten from the Pythagorean Theorem to the variable cord. Using the Polar function,
we can now find one intersection point between the circle and the cut axis:

(setq cpt2 (polar wkpt (angle lpt2 lpt1) cord))

In this expression, we find one intersection by applying the angle described by lpt1 and lpt2 and the distance
described by cord to the polar functions (see figure 6.22).

Figure 6.22: Finding the location of an intersection point.

The ABC’s of AutoLISP by George Omura

134

Copyright © 2001 George Omura,,World rights reserved

 Since the two intersection points are symmetric about point wkpt, the second intersection point is found by
reversing the direction of the angle in previous expression:

(setq cpt3 (polar wkpt (angle lpt1 lpt2) cord))

Finally, we can get AutoCAD to do the actual work of cutting the circle:

(command "erase" cpt1 ""

"arc" "c" cent cpt2 cpt3

"arc" "c" cent cpt3 cpt2

)

)

Actually, we don't really cut the circle. Instead, the circle is erased entirely and replaced with two arcs (see figure
6.23).

Figure 6.23: Drawing the new circle.

The ABC’s of AutoLISP by George Omura

135

Copyright © 2001 George Omura,,World rights reserved

Functions Useful in Geometric Transformations
The majority of your graphic problems can be solved with the basic trigonometric functons used in the Cutcr
program. But AutoLISP provides the tools to solve even th emost arcane trigonometric problems. This section
shows the functions you are most likely to use in situations that require geometric manipulations.

Trans
Trans translates a coordinate or displacement from one user coordinate system to another. The first argument is a
point of reference. The second argument is a code indicating which coordinate system the point is expressed in. The
third argument is a code indicating which coordinate system the point is to be translated to. An optional fourth
True/nil argument can be included. If this fourth argument evaluates to True or non-nil, then the first argument will
be treated as a displacement rather than a point value. The following are the codes for the second and third
arguments.

Code Coordinate System

0 World Coordinate System

1 Current User Coordinate System

2 Coordinate system of the current view plane

Trans returns a coordinate or displacement list.

The syntax for Trans is

(trans [coordinage_list] [UCS_code] [optionalT/nil])

Atan

Atan returns the arctangent in radians of its first argument. If the argument is negative, then the
value returned will be negative. If two arguments are supplied, then Atan returns a the arctangent
of the first argument divided by the second argument.

The syntax for Atan is

(atan [number] [optional_2nd_number])

Inters

Inters returns a coordinate list of the intersection of two vectors. The first two arguments to inters
are the endpoints of one vector while the third and fourth arguments define the other vector. If an

The ABC’s of AutoLISP by George Omura

136

Copyright © 2001 George Omura,,World rights reserved

optional fifth agrument is present and evaluates to nil, then Inters will attempt to locate an
intersection point of the two vectors regardless of whether the intersection falls between the
specified points or not.

The syntax for Inters is

(inters [point point point point] [optional_T/nil])

Sin

Sine returns the sine of an angle as a real number. The angle must be expressed in radians.

The syntax for Sine is

(sin [angle])

Cos

Cos returns the Cosine of an angle as a real number. The angle must be expressed in radians.

The syntax for Cos is

(cos [angle])

 Conclusion
The majority of your graphic problems can be solved using the basic trigonometric functions shown in this sample
program. But AutoLISP provides the tools to solve even the most arcane Trigonometric problems. If you find you
need to use these math trig functions, consider making liberal use of a sketch pad or for that matter, AutoCAD itself
to document your program. You may want to re-use or modify programs such as the previous example and if you
don't have some graphic documentation recording how it works, you can have a difficult time understanding why
you wrote your program as you did.

The ABC’s of AutoLISP by George Omura

137

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoLISP by George Omura

138

Copyright © 2001 George Omura,,World rights reserved

Chapter 7: Working with Text
Introduction

Working With String Data Types

Searching for strings

How to Convert Numbers to Strings and Back

Converting a Number to a String

Converting Other Data Types

How to Read ASCII Text Files

Using a File Import Program

Writing ASCII Files to Disk

Using a Text Export Program

Conclusion

Introduction
If you have ever had to edit large amounts of text in a drawing, you have encountered one of AutoCAD's most
frustrating limitations. While AutoCAD's text handling capabilities is one of it's strong points, it still leaves much to
be desired where editing text is concerned. Fortunately AutoLISP can be of great help where text is concerned. In
this chapter, you will look at the many functions that AutoLISP offers in the way of text or string manipulation. You
will also look at how textural information can be store and retrieved from a file on disk and how data can be
converted to and from string data types.

Working With String Data Types
In earlier versions of AutoCAD, editing text was a tedious task. You have to use the Change command to select a
text line, then press return several times before you can actually make changes to the text. Even then, you would
have to re-enter the entire line of text just to change one word. The text editing features of AutoCAD have come a
long way and it doesn't take the same painful effort it once did. The following program is a simple line editor which
simplifies the task of editing a single line of text. It was designed for the older versions of AutoCAD before the
Ddmodify and Ddedit commands were available. While its function may be a bit outdated, it will serve to
demonstrate how to handle text in AutoLISP.

The ABC’s of AutoLISP by George Omura

139

Copyright © 2001 George Omura,,World rights reserved

Searching for Strings
The program Chtxt shown in figure 7.1 is a simple line editor. It uses AutoLISPs string handling functions to locate
a specific string, then it replaces that string with another one specified by the user.

Open a file called chtxt.lsp and copy the program shown in figure 7.1 into the file. Save and close this file and open
a new AutoCAD file called Chapt7.

;function to find text string from text entity-------------------------------
(defun gettxt ()
(setvar "osmode" 64) ;set osnap to insert
(setq pt1 (getpoint "\nPick text to edit: ")) ;get point on text
(Setvar "osmode" 0) ;set osnap back to zero
(setq oldobj (entget (ssname (ssget pt1) 0))) ;get entity zero from prop.
(setq txtstr (assoc 1 oldobj)) ;get list containing string
(cdr txtstr) ;extract string from prop.
)
;function to update text string of text entity-------------------------------
(defun revtxt ()
(setq newtxt (cons 1 newtxt)) ;create replacement propty.
(entmod (subst newtxt txtstr oldobj)) ;update database
)
;program to edit single line of text---
(defun C:CHTXT (/ count oldstr newstr osleng otleng oldt old1
 old2 newtxt pt1 oldobj txtstr oldtxt)
(setq count 0) ;setup counter to zero
(setq oldtxt (gettxt)) ;get old string from text
(setq otleng (strlen oldtxt)) ;find length of old string
(setq oldstr (getstring T "\nEnter old string ")) ;get string to change
(Setq newstr (getstring T "\nEnter new string ")) ;get replacement string
(setq osleng (strlen oldstr)) ;find length of substring-
 ;while string to replace is not found, do... to be replaced
 (while (and (/= oldstr oldt)(<= count otleng))
 (setq count (1+ count)) ;add 1 to counter
 (setq oldt (substr oldtxt count osleng)) ;get substring to compare
);end WHILE
 ;if counting stops before end of old string is reached...
 (if (<= count otleng)
 (progn
 (setq old1 (substr oldtxt 1 (1- count))) ;get 1st half of old string
 (setq old2 (substr oldtxt (+ count osleng) otleng));get 2nd half
 (setq newtxt (strcat old1 newstr old2)) ;combine to make new string
 (revtxt) ;update drawing
)
 (princ "\nNo matching string found.") ;else print message
);end IF
(PRINC)
);END C:EDTXT

Figure 7.1: The Chtxt.lsp file

The ABC’s of AutoLISP by George Omura

140

Copyright © 2001 George Omura,,World rights reserved

Load the Chtxt.lsp file and do the following steps:

 1. Use the Dtext command and write the following line of text:

For want of a battle, the kingdom was lost.

2. Enter Chtxt

3. At the prompt:

Pick text to edit:

pick the text you just entered. Note that the osnap cursor appears.

4. At the next prompt:

Enter old string:

enter the word battle in lower case letters.

5. At the next prompt:

Enter new string:

enter the word nail.

The text changes to read:

For want of a nail, the kingdom was lost.

In the C:CHTXT program, you are able to change a group of letters in a line of text without having to enter entire
line over again. Also, you don't have to go through a series of unneeded prompts as you do with the change
command. The following describes what C:CHTXT goes through to accomplish this.

The C:CHTXT program starts out with a user defined function called gettxt.

(defun C:EDTXT (/ count oldstr newstr osleng otleng oldt old1

old2 newtxt pt1 oldobj txtstr oldtxt)

(setq count 0)

(setq oldtxt (gettxt))

Gettxt prompts you to select the text to be edited. It then extracts from the drawing database the text string
associated with that text. The extracted text is assigned to the symbol oldtxt. We will look at this extraction process
in Chapter--- but for now, think of the gettxt function as a function for getting text.

The ABC’s of AutoLISP by George Omura

141

Copyright © 2001 George Omura,,World rights reserved

In the next line of the Chtxt program, we see a new function strlen:

(setq otleng (strlen oldtxt))

Strlen finds the number of characters in a string.

The syntax for strlen is:

(strlen [string or string variable])

Strlen returns an integer value representing the number of characters found in its arguments. Blank spaces are
counted as characters. In the above expression, the value found by strlen is assigned to the variable otleng.

The next two expressions obtain from the user the old portion of the text to be replace and the replacement text.

(setq oldstr (getstring T "\nEnter old string "))

(Setq newstr (getstring T "\nEnter new string "))

These two strings are saved as oldstr and newstr. Note that the T argument is used with getstring to allow the user to
use spaces in the string.

The next set of expressions do the work of the program. First, The number of characters of the string to be replaced,
oldstr, is found by using the strlen function:

(setq osleng (strlen oldstr))

This value is stored with a variable called osleng. Osleng will be used to find exactly where in the line of text the old
string occurs in the line of text being edited (see figure 7.2).

Figure 7.2: Using the strlen function

The following while function uses osleng\ to find the exact location of oldstr within oldtxt.

(while (and (/= oldstr oldt)(<= count otleng))

(setq count (1+ count))

(setq oldt (substr oldtxt count osleng))

);end WHILE

The ABC’s of AutoLISP by George Omura

142

Copyright © 2001 George Omura,,World rights reserved

The while expression tests for two conditions. The first test is to see of the current string being read matches the
string entered at the "String to be changed" prompt. The second test checks to see if the end of the text line has been
reached. The and logical operator is used to make sure that both test conditions are met before it continues
evaluating its other expressions.

We see a new function substr in this group of expressions:

(Setq oldt (substr oldtxt count osleng))

Substr extracts a sequence of characters from a string. Its syntax is:

(substr

[string or string variable]

[beginning of substring][end of substring]

)

The first argument to substr is the string within which a substring is to be extracted. By substring, we mean a group
of characters that are contained within the main string. The substring can be any contiguous sequence of characters
within the main string including the entire string itself. The second argument is the beginning location for the
substring. This can be an integer from 1 to the total number of characters in the main string. The third argument is
the ending location of the substring. This value is an integer greater than or equal to the value for the beginning of
the substring and it determines the ending location of the substring (see figure 7.3).

Figure 7.3: Using the substr function

The ABC’s of AutoLISP by George Omura

143

Copyright © 2001 George Omura,,World rights reserved

The while expression extracts a group of characters from oldtxt starting at the beginning. It stores this substring in
the variable oldt. Oldt is then compared with oldstr to see if they match. If the don't match, then while advances to
the next group of characters in oldtxt and compares this new group to oldstr. This goes on until a match is found or
the end of oldtxt is reached (See figure 7.4).

Figure 7.4: Using the while expression to find a matching string.

The ABC’s of AutoLISP by George Omura

144

Copyright © 2001 George Omura,,World rights reserved

String data types are case sensitive, This means that if you had entered "BATTLE" instead of "battle" at the string to
change prompt, you would have gotten the message:

No matching string found.

The string "BATTLE" is not equal to "battle" so as edtxt tries to find a string that matches "BATTLE", it never finds
it.

When the while expression is done, the next group of expressions takes the old text line apart and replaces the old
string with the new. First the if function is used to test whether the oldstring was indeed found.

(if (<= count otleng)

The if expression checks to see if the variable count is equal to or less than the length of the old text line. If count is
less than otleng, then the following set of expressions are evaluated:

(progn

(setq old1 (substr oldtxt 1 (1- count)))

(setq old2 (substr oldtxt (+ count osleng) otleng))

(setq newtxt (strcat old1 newstr old2))

(revtxt)

)

The progn function allows the group of expressions that follow to appear as one expression to the if function. The
first expression of this group:

(setq old1 (substr oldtxt 1 (1- count)))

separates out the first part of the old text line just before the old string. This is done using the substr function and the
count variable to find the beginning of the old string (see figure 7.5).

Figure 7.5: Finding the string before oldstr

The ABC’s of AutoLISP by George Omura

145

Copyright © 2001 George Omura,,World rights reserved

The next expression:

(setq old2 (substr oldtxt (+ count osleng) otleng))

separates out the last part of the old text line starting just after the old string. Again this is done using the substr
function and the count variable. This time, count is added to osleng to find the location of the end of the old string.
Otleng is used for the substring length. Even though its value is greater than the length of the substring w wan,
AutoLISP will read the substring to the end of Oldtxt (see figure 7.6).

Figure 7.6: Finding the string after oldstr

Finally, the expression:

(setq newtxt (strcat old1 newstr old2))

combines the first and last part of the old text line with the new string to form the replacement text line (see figure
7.7).

Figure 7.7: Combining the old string with the new

The last expression in this group:

The ABC’s of AutoLISP by George Omura

146

Copyright © 2001 George Omura,,World rights reserved

(revtxt)

is a user defined function that does the work of replacing the old text with the new.

(defun revtxt ()

(setq newtxt (cons 1 newtxt))

(entmod (subst newtxt txtstr oldobj))

)

In the event that count is greater than otleng, the following expression is evaluated:

(princ "\nNo matching string found.")

);end IF

This expression prints the message:

No matching string found.

to the prompt line.

The very last expression of the program:

(PRINC)

);END C:EDTXT

seems pretty useless at first glance. Princ without any arguments prints a blank to the prompt line. If this expression
were not here, however, AutoLISP would display the value of the last expression evaluated. Remember that
AutoLISP constantly cycles through the read-evaluate-print loop. The generally, the value of the last expression
evaluated is printed to the prompt line. While this doesn't affect the workings of the program, it may prove to be an
annoyance to the user or it may confuse someone not familiar with the program. Since princ will print a blank at the
prompt line when no arguments are supplied, it is often used without arguments at the end of a program simply to
keep the appearance of the program clean. If you like, try deleting the Princ expression from the program and reload
and run the program again. You will a value will appear in the prompt line when C:EDTXT finishes running.

How to Convert Numbers to String and Back
There are times when it is necessary to convert a string value to a number or vice versa. Suppose, for example, that
you want to be able to control the spacing of numbers generated by the program in chapter 5. You may recall that
this program creates a sequence of numbers equally spaced. The user is able to determine the beginning and ending
numbers and the location of the beginning number but cannot determine the distance between numbers. You can use
the rtos function to help obtain a distance value and include it with the program. Figure 7.8 shows the C:SEQ
program from chapter 5 modified to accept distance input.

The ABC’s of AutoLISP by George Omura

147

Copyright © 2001 George Omura,,World rights reserved

(defun C:SEQ (/ pt1 currnt last)
(setq pt1 (getpoint "\nPick start point: "))
(setq spc (getdist pt1 "\nEnter number spacing: "))
(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))
(setq stspc (rtos spc 2 2))
(setq stspc (strcat "@" stspc "<0"))
(command "text" pt1 "" "" currnt)
 (repeat (- last currnt)
 (setq currnt (1+ currnt))
 (command "text" stspc "" "" currnt)
)
)

Figure 7.8: The sequential number program

Converting a Number to a String
Exit AutoCAD and open the AutoLISP file seq.lsp. Make the changes shown in bold face type in figure 7.10. Save
and exit the seq.lsp file and return to the file chapt7. Load the C:SEQ program and do the following:

1. Enter seq at the command prompt.

2. At the prompt:

Pick start point:

pick a point at coordinate 1,3.

3. At the prompt:

Enter spacing:

enter .5.

4. At the prompt:

Enter first number:

enter 4.

The ABC’s of AutoLISP by George Omura

148

Copyright © 2001 George Omura,,World rights reserved

5. At the last prompt:

Enter last number:

enter 12.

The numbers 4 through 12 will appear beginning at your selected start point and spaced at 0.5 unit intervals.

The program starts by prompting the user to pick a starting point:

(defun C:SEQ (/ pt1 pt2 currnt last)

(setq pt1 (getpoint "\nPick start point: "))

A new prompt is added that obtains the spacing for the numbers:

(setq spc (getdist pt2 "\nEnter number spacing: "))

The spacing is saved as the symbol spc. The program continues by prompting the user to enter starting and ending
value:

(setq currnt (getint "\nEnter first number: "))

(setq last (getint "\nEnter last number: "))

Next, the function rtos is used to convert the value of spc to a string:

(setq stspc (rtos spc 2 2))

the syntax for rtos is:

(rtos [real or integer value][unit style code][precision])

The first argument to rtos is the number being converted. It can be a real or integer. The next argument is the unit
style code. Table shows a listing of these codes and their meaning.

Code Format

1 Scientific

2 Decimal

3 Feet and decimal inches

4 Feet and inches

5 Fractional units

The ABC’s of AutoLISP by George Omura

149

Copyright © 2001 George Omura,,World rights reserved

This code determines the style the number will be converted to. For example, if you want a number to be converted
to feet and inches, you would use the code 4. The third argument, precision, determines to how many decimal places
to convert. In our example, we use the code 2 for unit style and 2 for the number of decimal places to convert to a
string.

The next expression combines the converted number with the strings "@" and "<0" to form a string that can be used
in with the command function:

(setq stspc (strcat "@" stspc "<0"))

The next two expressions set up the location of the beginning of the text:

(command "text" pt1 "" "" currnt)

This is done because in the next set of expressions, The string that locates the text, "@distance<0", gives a distance
and direction rather than a point. The previous expressions locate a point which will cause the Text command in the
next expression to place the text in the proper place:

(repeat (- last currnt)

(setq currnt (1+ currnt))

(command "text" stspc "" "" currnt)

)

)

In the last three expressions, the repeat function is used to issue the text command, enter the number and advance to
the next number repeatedly until the last number is in place (see figure 7.9).

Figure 7.9: Writing the numbers into the AutoCAD file

The ABC’s of AutoLISP by George Omura

150

Copyright © 2001 George Omura,,World rights reserved

Converting Other Data Types

Before we continue, we should briefly look at several other functions that offer data type conversion. These
functions are listed in table .

Function Uses

angtos Converts real numbers (radians) into string values.

ascii Converts a string into its ASCII character code.

atoi Converts a string a string into an integer.

 itoa Converts an integer to a string.

chr Converts an integer representing an ASCII character code into a
string.

Angtos works in a similar way to rtos. It accepts a unit style code and a precision value. Its syntax is:

(angtos [angle value][unit style code][precision])

All of the other functions listed in table take a single item, the value to be converted, as their argument. For example,
to convert an integer into a string, you could use the following expression:

(itoa 55)

The resulting value is "55".

The functions ascii and chr convert ASCII character codes. These are numeric values that represent letters, numbers
and symbols. Figure 7.10 shows these codes and their meaning.

The ABC’s of AutoLISP by George Omura

151

Copyright © 2001 George Omura,,World rights reserved

Code Meaning Code Meaning Code Meaning Code Meaning Code Meaning Code Meaning

07 Beep 46 . 65 A 84 T 103 g 122 z

09 Tab 47 / 66 B 85 U 104 h 123 {

10 New line 48 0 67 C 86 V 105 i 124 |

13 Return 49 1 68 D 87 W 106 j 125 }

27 Escape 50 2 69 E 88 X 107 k 126 ~

32 Space 51 3 70 F 89 Y 108 l

33 ! 52 4 71 G 90 Z 109 m

34 " 53 5 72 H 91 [110 n

35 # 54 6 73 I 92 \ 111 o

36 $ 55 7 74 J 93] 112 p

37 % 56 8 75 K 94 ^ 113 q

38 & 57 9 76 L 95 _ 114 r

39 ' 58 : 77 M 96 ` 115 s

40 (59 ; 78 N 97 a 116 t

41) 60 < 79 O 98 b 117 u

42 * 61 = 80 P 99 c 118 v

43 + 62 > 81 Q 100 d 119 w

44 , 63 ? 82 R 101 e 120 x

45 - 64 @ 83 S 102 f 121 y

Figure 7.10: The ASCII character codes

The ABC’s of AutoLISP by George Omura

152

Copyright © 2001 George Omura,,World rights reserved

How to read ASCII text files
There are many reasons why you may want to have a program read from and write to an ASCII file. You may store
commonly used general notes in ASCII files on your hard disk which you would import into your drawing. Or you
may want to store drawing information on disk for later retrieval such as layering setup or block lists.

Using a File Import Program
The program shown in figure 7.11 is a rudimentary text import program. In this section, you will use it to examine
the way AutoLISP reads external ASCII files.

(Defun C:IMPRT (/ sp dt stl qst)
(setq nme (getstring "\nName of text file to import: "))
(setq sp (getpoint "\nText starting point: "))
(setq txt (open nme "r"))
(setq dt (read-line txt))
(setq lns (getdist "\nEnter line spacing in drawing units: "))
(setq ls (rtos lns 2 2))
(setq ls (strcat "@" ls "<-90"))
(command "text" sp "" "" dt)
 (while (/= dt nil)
 (setq dt (read-line txt))
 (command "text" ls "" "" dt)
)
(close txt)
(command "redraw")
)

Figure 7.11: A text import program

Create an ASCII file containing the program in figure 7.13. Give it the name Imprt.lsp. Go back to the Chapt7
AutoCAD file and load the Imprt.lsp file. Now run the program:

1. Enter imprt at the Command prompt.

2. At the prompt:

Name of text file to import:

Enter imprt.lsp.

The ABC’s of AutoLISP by George Omura

153

Copyright © 2001 George Omura,,World rights reserved

3. At the next prompt:

Text starting point:

pick a point at coordinate 2,8.

4. At the next prompt:

Enter line spacing in drawing units:

enter .4.

The contents of the file Imprt.lsp will be written into the drawing area using AutoCAD text.

The C:IMPRT program starts out by prompting the user to identify the file to be imported. The user is prompted to
enter the name of the file to be imported:

(Defun C:IMPRT (/ sp dt stl qst)

(setq nme (getstring "\nName of text file to import: "))

The entered name is saved as the variable nme. Next, the starting point is gotten:

(setq sp (getpoint "\nText starting point: "))

This point is saved as sp. The last prompt sets up the line spacing:

(setq lns (getdist sp "\nEnter line spacing in drawing units: "))

The spacing distance is assigned to the variable lns. Note that getdist is used so the user can input a distance either
through the keyboard or cursor.

In the next line, the AutoLISP function open is used to open the file to be imported:

(setq txt (open nme "r"))

In this expression, you are telling AutoLISP to open a file to be read, then assign that file to the variable txt. From
this point on, you can treat the variable txt as if it were a read only version of the file itself. This variable that
assumes the idobject of the file is called the file descriptor. At first, it may seem confusing that you assign the file
name to a variable that is used to locate and open the file then assign the open file to a variable of a different name.
But you cannot perform file reads and writes directly through a variable of the same name as the file. You can,
however, assign an open file to a symbol then treat that symbol as if it were the file itself.

The syntax for open is:

(open [name of file] [read or write code])

The first argument is the name of the file to be opened. The second argument is a code that tells AutoLISP whether
to allow read only, write only or appending operations on the file. The following table shows the codes and their
meaning.

The ABC’s of AutoLISP by George Omura

154

Copyright © 2001 George Omura,,World rights reserved

Code Uses

"r" Open a file for reading only. If the file does not exist, any attempts to read from it will result in an error
message.

"w" Open a file to write to. If the file already exists, its contents will be written over. If the file does not exist, it
will be created

"a" Open a file and append to the end if it. If the file does not exist, it will be created.

The next line uses the AutoLISP function read-line to read the first line of text from the open file:

(setq dt (read-line txt))

A line of text is read from the file represented by the symbol txt and is assigned to the variable dt. Read-line has
only one argument, the file descriptor. When the file is first opened, AutoLISP goes to the beginning of the file in
preparation to read it. Read-line reads the first line then AutoLISP moves to the second line waiting for further
instructions to read the file. The next time the expression:

(read-line txt)

is evaluated, AutoLISP will read the next line after the previously red line then move to the following line and wait
for another read-line function call.

The next two lines set up the location of the beginning of the text in the drawing editor:

(setq ls (rtos lns 2 2))

(setq ls (strcat "@" ls "<-90"))

The numeric value entered at the line spacing prompt is converted to a string then appended to the "@" and "<-90"
strings to create a string that can be used in the text command that follows. The next line writes the text from the
first line of the file into the AutoCAD drawing:

(command "text" sp "" "" dt)

The following while expression continually reads lines from the open file and writes them to the AutoCAD drawing
editor:

(while (/= dt nil)

(setq dt (read-line txt))

(command "text" ls "" "" dt)

)

The read-line function will return nil when it reaches the end of the file. At that point, the while expression stops its
recursion).

The ABC’s of AutoLISP by George Omura

155

Copyright © 2001 George Omura,,World rights reserved

Finally, to take care of housekeeping, the open file is closed.

(close txt)

This is a very important step in the file reading process. If a file is not closed, the contents of that file can be lost.

We should mention that C:IMPRT requires the current text style to have a height value of 0. If this is not the case,
then the program will not work properly. This is because in the line that actually writes the text into the drawing
editor:

(command "text" ls "" "" dt)

assumes that AutoCAD will prompt for a height value for the text. The height prompt occurs only when the current
text style has a height value of 0. If the current text style has a height value other than 0, the height prompt is
skipped. This would cause the above expression to add one too many returns in the text command sequence (see
figure 7.12).

Figure 7.12: The text command expects specific input

The ABC’s of AutoLISP by George Omura

156

Copyright © 2001 George Omura,,World rights reserved

Writing ASCII Files to Disk
AutoLISP lets you create ASCII files. You can use this capability to store different types of information ranging
from the current drawing status to general notes that appear in a drawing. The program in figure 7.13 demonstrates
this capability.

;Program to export text from AutoCAD -- Exprt.lsp
(Defun C:EXPRT (/ fname txt selset count nme oldtx)
 (setq fname (getstring "\nEnter name of file to be saved: "))
 (setq txt (open fname "w")) ;open file, assign symbol
 (setq selset (ssget)) ;get selection set
 (setq count 0) ;set count to zero
 (if (/= selset nil)
 (while (< count (sslength selset)) ;while count < # of lines
 (setq nme (ssname selset count)) ;extract text string
 (setq oldtx (cdr (assoc 1 (entget nme))))
 (write-line oldtx txt) ;write string to file
 (setq count (1+ count)) ;go to next line
);end while
);end if
(close txt) ;close file
);end C:EXPRT

Figure 7.13: A text export program

Using a Text Export Program
Exit AutoCAD then create a file called Exprt.lsp containing the program shown in figure 7.16. Return to AutoCAD,
load the file and proceed with the following:

1. Erase the text you imported previously.

2. Use the dtext command and starting the text at the coordinate 2,8, write the following lines:

For want of a nail, the shoe was lost;

For want of a shoe, the horse was lost;

For want of a horse, the rider was lost;

3. Enter exprt to start the text export program.

The ABC’s of AutoLISP by George Omura

157

Copyright © 2001 George Omura,,World rights reserved

4. At the prompt:

Enter name of file to save:

Enter test.txt.

5. At the prompt:

Select objects:

Pick the lines of text you just entered picking each one individually from top to bottom. Press return when you are
done.

The file test.txt is created containing the text you had just entered using AutoCAD's Dtext command. To make sure
the file exists, enter the following at the command prompt:

type test.txt

The AutoCAD type command is the same as the DOS type command. It displays the contents of a text file.
AutoCAD will switch to text mode and the contents of test.txt will be displayed on the screen.

The Exprt program starts by prompting the user to enter a name for the file to be saved to:

(Defun c:exprt (/ ts n dir)

(setq fname (getstring "\nEnter name of file to save: "))

Then, just as with the imprt program, the open function opens the file:

(setq txt (open n "w"))

In this case, the "w" code is used with the open functions since this file is to be written to. The next line obtains a
group of objects for editing using the ssget function:

(setq selset (ssget))

This selection set is saved as the variable selset. Next, a variable count is give the value 0 in preparation for the
while expression that follows:

(setq count 0)

The next if expression checks to see that the user has indeed picks objects for editing.

(if (/= selset nil)

If the variable selset does not return nil, then the while expression is evaluated:

(while (< count (sslength selset))

(setq entnme (ssname selset count))

The ABC’s of AutoLISP by George Omura

158

Copyright © 2001 George Omura,,World rights reserved

(setq oldtx (cdr (assoc 1 (entget entnme))))

(write-line oldtx txt)

(setq count (1+ count))

)

This while expression uses the count variable to determine the number of times it must evaluate its set of
expressions:

(while (< count (sslength selset))

The sslength function returns the number of objects contained in a selection set. In this case, it returns the number of
objects recorded in the variable selset. This value is compared with the variable count to determine whether or not to
evaluate the expressions found under the while expression.

The next two expressions extract the text string value from the first of the objects selected:

(setq entnme (ssname selset count))

(setq oldtx (cdr (assoc 1 (entget entnme))))

This extraction process involves several new functions which are discussed in chapter . For now, just accept that the
end result is the assignment of the text value of the selected object to the variable oldtx.

Now the actual writing to the file occurs:

(write-line oldtx txt)

Here the write-line functions reads the string held by oldtx and writes it to the file represented by the variable txt.

Write-line's syntax is:

(write-line [string][file descriptor])

The first argument is the string to be written to file while the second argument is a variable assigned to the open file.

The next line increases the value of count by one:

(setq count (1+ count))

This expression counts the number of times a string of text, and therefore an object, has been processed. Since the
while test expression checks to see if the value of count is less than the number of objects selected, once count
reaches a value equivalent to the number of objects selected and processed, the while expression stops processing.

The ABC’s of AutoLISP by George Omura

159

Copyright © 2001 George Omura,,World rights reserved

Finally, the all important close expression appears:

)

(close txt)

)

Just as with the C:IMPRT program, close must be used to properly close the file under DOS, otherwise its contents
may be in-accessible.

Read-line and write-line are two of several file read and write functions available in AutoLISP. Table shows several
other functions along with a brief description.

Function Description

(prin1 symbol/expression) Prints any expression to the screen prompt. If a file descriptor is included as an
argument, the expression is written to the file as well.

(princ symbol/expression) The same as prin1 but execute's control characters. Also, String quotation marks are
dropped.

print symbol/expression) The Same as prin1 but a new line is printed before its expression and a space is
printed after.

(read-char file_descriptor)
Reads a single character from the keyboard. If a file descriptor is included as an
argument, it reads a character from the file. The value returned is in the form of an
ASCII character code.

read-line file_descriptor) Reads a string from the keyboard or a line of text from an open file.

write-char integer
file_descriptor)

Writes a single character to the screen prompt or if a file descriptor is provided, to
an open file. The character argument is a number representing an ASCII character
code.

write-line string file_descriptor)Writes a string to the screen prompt or if a file descriptor is provided, to an open
file.

The three functions prin1, princ, and print are nearly identical with some slight differences. All three use the same
syntax as shown in the following:

(princ [string or string variable][optional file descriptor])

The file descriptor is a symbol that has been assigned an open file.

The ABC’s of AutoLISP by George Omura

160

Copyright © 2001 George Omura,,World rights reserved

The main difference between these three functions is in what they produce as values. The following shows an
expression using prin1 followed by the resulting value:

(prin1 "\nFor want of a nail...")

"For want of a nail...""\nFor want of a nail..."

Notice that the string argument to prin1 is printed twice to the prompt line. This is because both prin1 and AutoLISP
will print something to the prompt. Prin1 prints its a literal version of its string argument. AutoLISPs read-evaluate-
print loop also prints the value of the last object evaluated. The net result it the appearance of the string twice on the
same line.

Princ differs from prin1 in that instead of printing a literal version of its string argument, it will act on any control
characters included in the string:

(princ "\nFor want of a nail...")

For want of a nail..."\nFor want of a nail..."

In the prin1 example, the \n control character is printed without acting on it. In the princ example above, the \n
character causes the AutoCAD prompt to advance one line. Also, the string is printed without the quotation marks.
Again, the AutoLISP interpreter prints the value of the string directly to the prompt line after princ does it's work.
Table Shows the other control characters and what they do.

Character Use

\e Escape

\n New line

\r Return

\t Tab

\nnn Character whose octal code is nnn

The print function differs from the prin1 function in that it advances the prompt one line before printing the string
then it adds a space at the end of the string:

(print "\nFor want of a nail...")

"\nFor want of a nail..." "\nFor want of a nail..."

Just as with prin1, print prints a literal version of its string argument.

The ABC’s of AutoLISP by George Omura

161

Copyright © 2001 George Omura,,World rights reserved

Conclusion
While a good deal of your effort using AutoLISP will concentrate on graphics and numeric computation, the ability
to manipulate string data will be an important part of your work. You have been introduced to those functions that
enable you to work with strings.

You have also seen how these functions work together to perform some simple tasks like reading and writing text
files. But you don't have to limit yourself to using these functions for text editing. Since any kind of information can
be stored as a string, you may find ways to further enhance your use of AutoCAD through the manipulation of string
data. One of the more obvious uses that comes to mind is the importation of numeric data for graphing, charting or
other types of data analysis. As long as data is stored in an ASCII format, AutoLISP can read it. And with
AutoLISP's data conversion functions, numeric data can be easily translated from ASCII files.

The ABC’s of AutoLISP by George Omura

162

Copyright © 2001 George Omura,,World rights reserved

Chapter 8: Interacting with AutoLISP
Introduction

Reading and Writing to the Screen

Reading the Cursor Dynamically

Writing Text to the Status and Menu Areas

Calling Menus from AutoLISP

Drawing Temporary Images on the Drawing Area

Using Defaults in a Program

Adding Default Responses to your Program

Creating a Function to Handle Defaults

Dealing with Aborted Functions

Using the *error* Function

Organizing Code to Reduce Errors

Debugging Programs

Common Programming Errors

Using Variables as Debugging Tools

Conclusion

Introduction
AutoLISP offers a number of ways to interact with AutoCAD and the user. You have already seen how AutoLISP
can control system variables through the setvar and getvar functions and you have seen the various ways your
programs can obtain information from the user through the get functions. You can also control the display of menus,
status and coordinate lines, graphic and text screens, and even the drawing area. By giving you control over the
display, you can enhance the way your programs interact with the user.

When writing your program, consideration should be made as to how the program will act under various conditions.
In this chapter, you will explore some of the ways you can exploit AutoLISP and AutoCAD features to make your
programs more responsive to the user.

Reading and Writing to the Screen
There are many functions that will allow you to write prompts to the prompt line. But you are not limited to control
of the prompt. Several functions are available that allow you to both read and write to other parts of the AutoCAD
drawing editor. In this section, you will examine these functions.

Reading the Cursor Dynamically
In chapter 3 you used a function called RXY. This function reads the cursor location relative to a reference point and
writes the relative coordinate directly to the coordinate readout. This is done dynamically as the cursor moves. The
function that allows this to occur is the grread function. Grread's syntax is:

The ABC’s of AutoLISP by George Omura

163

Copyright © 2001 George Omura,,World rights reserved

(grread [optional track argument])

Grread is a general input device reading function. It reads input from the keyboard, buttons on your pointing device,
or the cursor location. Grread returns a list of two elements:

([integer][coordinate list or integer])

The first element is a code representing the type of input received. The second element is either an integer or list
depending on whether a point has been input or a keyboard or pointing device button has been depressed. Table
shows a list of codes for the first element of the list returned by grread:

Input Code Meaning

(2 [ASCII code]) keyboard pressed. The second element of the list will be an integer representing the ASCII code
of the key character pressed.

(3 [coordinate]) Cursor location picked. The second element of the list will be a coordinate list.

(4 [cell #]) Screen menu cell picked. The second element of the list will be an integer representing the cell
number. The cells are numbered from top to bottom.

(5 [coordinate]) Dynamic cursor mode. The second element of the list will be a coordinate list. This code is
returned only if a non-nil argument is supplied to the grread function.

(6 [button #]) Button on pointing device pressed. The second element of the list will be an integer representing
the button number.

(7 [box #]) Tablet1 menu item selected. The second element of the list will be an integer representing the
tablet item box number.

(7-10 [box #]) Tablet menu item selected. 7 equals tablet1 menu group, 8 equals tabalet2 menu group and so
on. The second element of the list will be an integer representing the tablet item box number.

(11 [box #]) Aux1 menu item selected. The second element of the list will be an integer representing the
tablet item box number.

(12 [coordinate])
If two grread functions are used in sequence, and the first returns a code 6, the second grread
will return a code 12 and its second element will be the coordinate of the cursor at the time the
pointing device button was picked.

(13 [menu cell #]) Screen menu item picked using keyboard input. The second element of the list will be the menu
cell number.

Open a new AutoCAD file and turn on the snap mode. Enter the following at the AutoCAD command prompt:

(grread)

Now pick a point near the center of the screen using our mouse or digitizer puck. You will get a list similar to the
following:

The ABC’s of AutoLISP by George Omura

164

Copyright © 2001 George Omura,,World rights reserved

(3 (7.0 5.0 0.0))

The first element of the list is the integer 3. this tells us that the pick button on the pointing device was entered. The
second element is a coordinate list showing the coordinate that was picked.

lets look at the expression in the RXY function that uses grread to read the cursor dynamically:

(setq pt (cadr (setq lt (grread t))))

The t argument tells grread to read the cursor location dynamically, that is, read it regardless of whether a button has
been pushed or not. By using the T option, grread reads the cursor location even as it moves. The value from grread
is assigned to the symbols lt for later processing. This value in turn is applied to cadr to obtain the coordinate list
from grread. Finally, the coordinate list is assigned to the symbol pt (see figure 8.1).

Figure 8.1: The evaluation of the grread expression

Once the coordinate is read by grread in the above expression, it is processed by the following set of expressions:

(if (= (car lt) 5)

(progn

(setq x (strcat

(rtos (- (car pt) (car lpt1))) " x "

(rtos (- (cadr pt) (cadr lpt1))) " SI= "

(rtos (*(- (car pt) (car lpt1))

(- (cadr pt) (cadr lpt1))

The ABC’s of AutoLISP by George Omura

165

Copyright © 2001 George Omura,,World rights reserved

)

2 2)

)

)

(grtext -2 x)

)

)

This set of expressions takes the x and y components of the point pt and subtracts them from the x and y components
of the reference point lpt1, which is selected earlier by the user. It then multiplies the remaining x and y values
together to get the area of the rectangle formed by these two points. Finally, these values are turned into strings that
can be sent to the screen.

First, the if expression tests to see if the code gotten from grread is 5. This checks to see if the coordinate was
derived from the cursor in a drag mode.

(if (= (car lt) 5)(progn

Remember that lt is the list from the grread expression so the car of lt is its first element, the input code.

The next line is the outer most nest of an expression that combines a set of strings together into one string using
strcat:

(setq x (strcat

This is followed by an expression that subtracts the x component of lpt1, our reference point, from the x of the
current point pt:

(rtos (- (car pt) (car lpt1))) " x "

The resulting difference is converted into a string by rtos. The " x " element in this expression is the x that appears
between the x and y value in the coordinate readout (see Figure 8.2).

The next expression subtracts the y component of lpt1 from the y of the current point pt then converts the resulting
difference into a string:

(rtos (- (cadr pt) (cadr lpt1))) " SI= "

The " SI= " at the end of this line is the SI= that appears after the coordinate list in the coordinate readout.

The ABC’s of AutoLISP by George Omura

166

Copyright © 2001 George Omura,,World rights reserved

The next two expressions multiplies x and y value differences to get the area of the rectangle represented by lpt1 and
pt:

(rtos (*(- (car pt) (car lpt1))

(- (cadr pt) (cadr lpt1))

)

2 2)

)

)

The 2 2 in the fourth line down are the unit style and precision arguments to the rtos function.

Figure 8.2: The elements of the coordinate readout

The ABC’s of AutoLISP by George Omura

167

Copyright © 2001 George Omura,,World rights reserved

 Writing Text to the Status and Menu Areas
Finally, all the values of the preceding group of expressions are concatenated then stored as the variable x which is
in turn given as an argument to grtext:

(grtext -2 x)

)

);end if

Grtext writes the value of x to the coordinate readout. Grtext's syntax is:

(grtext [cell code] [string] [optional highlight code])

The cell code is the number of the screen menu cell you want to write the string to. Screen menu cells are numbered
from 0 to the maximum number of cells available minus 1. If a -1 is used for the cell code, the string is written to the
status area to the left of the coordinate readout. If the code is -2, as in the RXY function above, it is written to the
coordinate readout area (see figure 8.3).

Figure 8.3: The AutoCAD screen and the corresponding screen codes

The ABC’s of AutoLISP by George Omura

168

Copyright © 2001 George Omura,,World rights reserved

Although grtext allows you to display a string in the screen menu, such a string cannot be read by picking it with the
cursor as you might think. Instead, the underlying menu option that has been written over by the grtext function is
activated. If you want to override the underlying menu option, you can use grread to find the cell number picked
using the using the cursor. Once you know the cell number, you can write expressions that instruct AutoCAD to
perform alternate tasks.

Near the end of the RXY program, an expression sets the variable pick to T or nil depending on the input code from
the variable lt:

 (setq pick (= 3 (car lt)))

 If the input code from lt is equal to 3, then pick is set equal to T, otherwise it is set to nil. This expression controls
the while expression. If you look at the beginning of the while expression, the use of this expression becomes more
clear (see figure 8.4).

Figure 8.4: The pick variable used to control the while expression.

The ABC’s of AutoLISP by George Omura

169

Copyright © 2001 George Omura,,World rights reserved

The while expression continually evaluates its set of expressions as long as pick is not equal to t. The last expression
checks to see if the input code from lt is 3. If it is, that means that a point has been picked using the pick button. Pick
is then set to T and the while expression stops running.

Calling Menus from AutoLISP
To make your program easier to use, you may want to have a particular menu appear whenever your program runs.
AutoLISP provides the menucmd function for this purpose. Menucmd's syntax is:

(menucmd [menu specification])

The menu specification is a code used to call a particular menu. The code resembles the code used within the menu
system to call other menus (see Appendix___ for details on menu codes). The only difference between these codes
and their menu counterpart is that the menucmd code is not preceded by a dollar sign. The following table gives a
brief description of these codes:

Code Description

bn=menu name Calls button menus. The n that follows the b is the number of the button menu group.

s=menu name Calls screen menus

pn=menu name Calls Pull down menus. The n that follows the p is the number of the pull down menu
group.

Figure 8.5 Shows the box program from chapter 2 with the addition of the menucmd function that calls the osnap
screen menu. If you were to load and run this program, the osnap screen menu would appear at the first prompt.
(Note that screen menus are not a standard part of AutoCAD release 13 or 14 though they can be turned on for
compatibility with older versions.)

(defun c:BOX (/ pt1 pt2 pt3 pt4)
(menucmd "s=osnapb")
(setq pt1 (getpoint "Pick first corner: "))
(setq pt3 (getcorner pt1 "Pick opposite corner: "))
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
(command "line" pt1 pt2 pt3 pt4 "c")
)

Figure 8.5: The modified box program

The ABC’s of AutoLISP by George Omura

170

Copyright © 2001 George Omura,,World rights reserved

Using menucmd with the pull down menu's is a bit more involved. Figure 8.6 shows the same program again this
time making a call to the filters pull down menu. If you load and run this program, the tools pull down menu with
the osnap options will pop down.

(defun c:BOX (/ pt1 pt2 pt3 pt4)
(menucmd "p1=filters")
(menucmd "p1=*")
(setq pt1 (getpoint "Pick first corner: "))
(setq pt3 (getcorner pt1 "Pick opposite corner: "))
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt4 (list (car pt1) (cadr pt3)))
(command "line" pt1 pt2 pt3 pt4 "c")
)

Figure 8.6: The box program modified to call a pull down menu

Notice that a line was added in addition to the first menucmd line:

(menucmd "p1=*")

Just as you must include the $p1=* in a menu macro to display the tools pull down menu, you must also include the
asterisk call in your AutoLISP program following any pull down menu call.

 Drawing Temporary Images on the Drawing Area
There may be times when you will want an image drawn in the drawing area that is not part of the drawing database.
Such a temporary image can be useful to help you locate points or draw temporary images to help place blocks or
other objects. Figure 8.7 shows a program that performs zooms in a different way from the standard AutoCAD
zoom. In this program called C:QZOOM, the screen is divided visually into four quadrants. You are prompted to
pick a quadrant at which point the quadrant is enlarged to fill the screen. Optionally, you can press return at the Pick
quadrant prompt and you will be prompted to pick a new view center. This option is essentially the same as a pan.
Copy C:QZOOM into an AutoLISP file and load and run it.

The ABC’s of AutoLISP by George Omura

171

Copyright © 2001 George Omura,,World rights reserved

(defun mid (a b)
(list (/ (+ (car a) (car b)) 2) (/ (+ (cadr a) (cadr b)) 2))
)
(defun C:QZOOM (/ center height ratio width
 wseg hseg ll ur ul lr newctr)
 ;find screen position
(setq center (getvar "viewctr"))
(setq height (getvar "viewsize"))
(setq ratio (getvar "screensize"))
(setq width (* height (/ (car ratio)(cadr ratio))))
(setq wseg (/ width 2.0))
(setq hseg (/ height 2.0))
;find screen corners
(Setq ll (list (- (car center) wseg)(- (cadr center) hseg)))
(Setq ur (list (+ (car center) wseg)(+ (cadr center) hseg)))
(Setq ul (list (- (car center) wseg)(+ (cadr center) hseg)))
(Setq lr (list (+ (car center) wseg)(- (cadr center) hseg)))
;draw screen quadrants
(grdraw center (polar center pi wseg) -1 1)
(grdraw center (polar center 0 wseg) -1 1)
(grdraw center (polar center (* pi 0.5) hseg) -1 1)
(grdraw center (polar center (* pi 1.5) hseg) -1 1)
;get new center and height
(setq newctr (getpoint "\nPick quadrant/<pan>: "))
 (cond
 ((not newctr)
 (setq newctr (getpoint "\nPick new center: "))
 (setq hseg height)
)
 ((and (< (car newctr)(car center))(< (cadr newctr)(cadr center)))
 (setq newctr (mid center ll))
)
 ((and (< (car newctr)(car center))(> (cadr newctr)(cadr center)))
 (setq newctr (mid center ul))
)
 ((and (> (car newctr)(car center))(< (cadr newctr)(cadr center)))
 (setq newctr (mid center lr))
)
 ((and (> (car newctr)(car center))(> (cadr newctr)(cadr center)))
 (setq newctr (mid center ur))
)
)
(command "zoom" "c" newctr hseg)
)

Figure 8.7: The C:QZOOM program

The ABC’s of AutoLISP by George Omura

172

Copyright © 2001 George Omura,,World rights reserved

The program is written with comments to group parts of the program together visually. The first group establishes
several variables. It finds the current view center point, the view height in drawing units, and the views height to
width ratio. Based on this ratio, it finds the width of the current view in drawing units. It also finds the values for
half the width and height (see figure 8.8).

Figure 8.8: Finding the current screen properties

The next group establishes the four corner points of the current view. This is done by taking the center point of the
view and adding and subtracting x and y value for each corner (see figure 8.9).

The ABC’s of AutoLISP by George Omura

173

Copyright © 2001 George Omura,,World rights reserved

Figure 8.9: Finding the current displays four corner coordinates.

The next group draws the lines that divides the screen into quadrants (see Figure 8.10). Looking a the first line, you
can see the grdraw function:

(grdraw center (polar center pi wseg) -1 1)

The syntax for grdraw is:

(grdraw [from point][to point][color code][optional highlight code])

The lines grdraw draws act like blips. As soon as you issue any command that changes the display, including

The ABC’s of AutoLISP by George Omura

174

Copyright © 2001 George Omura,,World rights reserved

redraws, the lines disappear. The first and second arguments to grdraw determine the endpoints of the temporary
line. The third argument is the color code. This code is an integer value that represents the color you want the line to
have. If the color code is -1, then the line will be drawn in a color that compliments its background. This ensures that
the line will be seen. The fourth argument is optional. Whenever it is a integer other than 0 the line will be drawn
highlighted. This usually means in a dotted pattern similar to that shown in a crossing window.

Figure 8.10: The quadrants drawn on the screen

In the C:QZOOM program, grdraw draws lines from the center of the current view out toward the four sides of the
screen. The -1 color code is used so the color of the lines is opposite to the background color. Finally, the highlight
option is used by supplying a 1 as a fourth argument.

The last group of expressions does the work of reading the pick point from the user and determining which quadrant
to enlarge.

The ABC’s of AutoLISP by George Omura

175

Copyright © 2001 George Omura,,World rights reserved

Using Defaults in a Program
Virtually every AutoCAD command offers a default value. For example, the line command will continue a line from
the last point selected if no point is selected at the First point prompt. Defaults can be a great time saver especially
when the user is in a hurry. In this section, you will see first hand how you can add defaults to your own programs.

Adding Default Responses to your Program
In the C:QZOOM program, a default response was added. If the user presses return without picking a point, the
program goes into a pan mode allowing the use to select a new view center. By giving the user the pan option in this
way, the program becomes easier to use and more flexible. Other AutoCAD commands also provide default values
for options. For example, the offset command will offer the last offset distance as a default value for the current
offset distance. If the user decides he or she can use that value, he or she only needs to press return to go on to the
next part of the command.

You can incorporate similar functionality into your programs by using global variables. Figure 8.11 shows the
sequential number program created in chapter 5 with code added to include a default value for the number spacing.

(defun C:SEQ (/ pt1 currnt last spc)
(if (not *seqpt)(setq *seqpt 2.0)) ;setup global default
(setq pt1 (getpoint "\nPick start point: ")) ;get start point
(princ "\nEnter number spacing <") ;first part of prompt
(princ *seqpt) ;print default part of prompt
(setq spc (getdist pt1 ">: ")) ;finish prompt - get spac'g
(setq currnt (getint "\nEnter first number: ")) ;get first number
(setq last (getint "\nEnter last number: ")) ;get second number
(if (not spc)(setq spc *seqpt)(setq *seqpt spc));set global variable
(setq stspc (rtos spc 2 2)) ;convert spacing to string
(setq stspc (strcat "@" stspc "<0")) ;create spacing string
(command "text" pt1 "" "" currnt) ;place first number
 (repeat (- last currnt) ;start repeat 'till last
 (setq currnt (1+ currnt)) ;add 1 to current number
 (command "text" stspc "" "" currnt) ;place text
) ;end repeat
) ;end defun

Figure 8.11: The modified C:SEQ program

Make the changes to your copy of the C:SEQ program so it looks like figure 8.11. Open a new file in AutoCAD,

The ABC’s of AutoLISP by George Omura

176

Copyright © 2001 George Omura,,World rights reserved

load the newly modified C:SEQ program, and then run it. The program will run as it has before but it now offers a
default value of 2.0 at the Enter number spacing prompt:

Enter number spacing <2.0>:

Press return at this prompt. The default value of 2.0 will be applied to the number spacing. If you enter a different
value, .5 for example, this new value becomes the default. The next time you run the program, .5 will appear as the
default value for the number spacing:

Enter number spacing <0.5>:

There are actually several expressions that are added to make this default option possible. First is a conditional
expression that test to see if a global variable called *seqpt is non-nil:

(defun C:SEQ (/ pt1 currnt last spc)

(if (not *seqpt)(setq *seqpt 2.0))

It its' value is nil, it is given the value of 2.0. This is just an arbitrary value. You can make it anything you like.

Next, the user is prompted to pick a point just as in the previous version of the program:

(setq pt1 (getpoint "\nPick start point: "))

The next set of expressions does the work of displaying the default value to the AutoCAD prompt.

(princ "\nEnter number spacing <")

(princ *seqpt)

(setq spc (getdist pt1 ">: "))

The prompt is broken into three parts. The first expression above prints everything before the default value. The
second expression prints the default value. The third expression uses the getdist function to obtain a new distance
value from the user. The end of the prompt is included as the prompt string to the getdist function. The net result is a
single line appearing at the AutoCAD prompt (see figure 8.12).

Figure 8.12: Using princ to construct a prompt

The ABC’s of AutoLISP by George Omura

177

Copyright © 2001 George Omura,,World rights reserved

The next two lines are unchanged from the earlier version of the program:

(setq currnt (getint "\nEnter first number: "))

(setq last (getint "\nEnter last number: "))

The next line is a new conditional expression that tests to see if a value was entered at the Enter number spacing
prompt:

(if (not spc)(setq spc *seqpt)(setq *seqpt spc))

This expression test the variable spc to see if it value is non-nil. If it is nil, indicating the user pressed return without
entering a value, spc is assigned the value of the global variable *seqpt. This is the default value that appears in the
Enter number spacing prompt. If spc does have a value, then its value is assigned to *seqpt thus making the value of
spc the new default value.

The rest of the program is unchanged:

(setq stspc (rtos spc 2 2))

(setq stspc (strcat "@" stspc "<0"))

(command "text" pt1 "" "" currnt)

(repeat (- last currnt)

(setq currnt (1+ currnt))

(command "text" stspc "" "" currnt)

)

)

You may wonder why the global variable *seqpt starts with an asterisk. Names given to global variables don't have
to be different from other symbol but you may want to set them off by preceding them with an asterisk. This is a
convention used in Common LISP which we have carried over to AutoLISP.

 Creating a Function to Handle Defaults

If you find that many of your programs utilize defaults, it may be worthwhile to create a function that creates the
default prompts for you. Figure 8.13 Shows the C:SEQ program with a function added to handle default prompts.

The ABC’s of AutoLISP by George Omura

178

Copyright © 2001 George Omura,,World rights reserved

(defun deflt (str1 def)
(strcat str1 " <" (rtos def 2 4) ">: ")
)

(defun C:SEQ (/ pt1 currnt last spc)
(if (not *seqpt)(setq *seqpt 2.0)) ;setup global default
(setq pt1 (getpoint "\nPick start point: "))
(setq spc (getdist (deflt "\nEnter spacing" *seqpt)))
(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))
(if (not spc)(setq spc *seqpt)(setq *seqpt spc)) ;set global variable
(setq stspc (rtos spc 2 2))
(setq stspc (strcat "@" stspc "<0"))
(command "text" pt1 "" "" currnt)
 (repeat (- last currnt)
 (setq currnt (1+ currnt))
 (command "text" stspc "" "" currnt)
)
)

Figure 8.13: The C:SEQ program with a default handling function.

The function deflt takes two arguments. The first is the beginning text of the prompt and the second is the default
value.

(defun deflt (str1 def / lunts)

(setq lunts (getvar "lunits"))

(strcat str1 " <" (rtos def lunts 4) ">: ")

)

The arguments are concatenated to form a single string which is the value returned by the function. Since the default
value is a real data type, it is converted to a string using the rtos function. The getvar expression at the beginning of
the function finds the current unit style which is used in the rtos function to control the unit style created by rtos.

The C:SEQ function uses this function in the expression:

(setq spc (getdist (deflt "\nEnter spacing" *seqpt)))

Here, the function is place where the prompt string normally appears in a getdist expression. When deflt is
evaluated, it returns the string:

"\nEnter spacing <2.0000>: "

This string is then supplied to the getdist function as the prompt string argument.

The ABC’s of AutoLISP by George Omura

179

Copyright © 2001 George Omura,,World rights reserved

The C:SEQ program still requires the two conditional expressions that were added earlier:

(if (not *seqpt)(setq *seqpt 2.0))
.
.
.

(if (not spc)(setq spc *seqpt)(setq *seqpt spc)) ;set global

But without increasing the amount of code, we are able to make a simpler and more flexible system to add prompts
to our programs. An added benefit is a more readable program.

 Dealing with Aborted Functions
If you are writing programs for yourself, you may not be too concerned with how the program looks or behaves. But
if you start to write programs for others to use, you have to start thinking about ways of making your programs more
error proof. You should provide ways of easily exiting your program without creating problems for the unfamiliar
user. Error handling, as it is often called, is writing your program to include code that anticipates any possible input
errors the user might come up with. Fortunately, most of AutoLISPs get functions have some error handling
capabilities built in. If you enter a string when a get function expects a point, you will get a message telling you that
a point is expected.

But the most common error handling problem you will encounter is the aborted program. We can get an idea of how
an aborted program can affect a users work by using the C:BREAK2 program from chapter 6.

Open an AutoCAD file and load the C:BREAK2 program. Start C:BREAK2 by entering break2 at the command
prompt. At the prompt:

Select object:

press the Ctrl-C key combination to abort the program. Now any time you use your cursor to select a point or object,
you will get the "nearest" osnap override. This because you aborted the program before it was able to set the osnap
mode back to none (see figure 8.14).

The ABC’s of AutoLISP by George Omura

180

Copyright © 2001 George Omura,,World rights reserved

Figure 8.14: What happens when C:BREAK2 is aborted

Using the *error* Function
To deal with problems like this, you can use a special AutoLISP function called *error*. If a function is created
using *error* as its name, it is evaluated whenever an error occurs. Figure 8.15 shows the Break2.lsp file with the
addition if an *error* function. Open the Break2.lsp file and add the *error* function shown in figure 8.16.

The ABC’s of AutoLISP by George Omura

181

Copyright © 2001 George Omura,,World rights reserved

(defun *error* (msg)
(setvar "osmode" 0)
(princ msg)
(princ)
)

(defun c:break2 (/ pt1 pt2 pt3 pt4 pt0 ang1 dst1)
 (setvar "osmode" 512) ;near osnap mode
 (setq pt1 (getpoint "\nSelect object: ")) ;get first break point
 (setq pt2 (getpoint pt1 "\nEnter second point: ")) ;get second break point
 (setvar "osmode" 128) ;perpend osnap mode
 (Setq pt3 (getpoint pt1 "\nSelect parallel line: "));get 2nd line
 (Setvar "osmode" 0) ;no osnap mode
 (setq ang1 (angle pt1 pt3)) ;find angle btwn lines
 (setq dst1 (distance pt1 pt3)) ;find dist. btwn lines
 (setq pt4 (polar pt2 ang1 dst1)) ;derive pt4 on 2nd line
 (command
 "break" pt1 pt2 ;break 1st line
 "break" pt3 pt4 ;break 2nd line
 "line" pt1 pt3 "" ;close ends of lines
 "line" pt2 pt4 ""
)
)

Figure 8.15: The Break2.lsp file with an error checking function added.

Save the file go back to the AutoCAD file. Be sure that osnap is set to "none". Load and start the C:Break2 program.
Again, at the Select object prompt, enter a Ctrl-C.

Now, instead of leaving the osnap mode in the "nearest" setting, the *error* function returns the osnap setting back
to "none". It also prints the message:

Function cancelled

Lets look at this function to see exactly how it works. The first line looks like a typical defun expression:

(defun *error* (msg)

The argument list contains the symbol msg. *error* accepts as an argument, an error message. This error message is
the one that appears normally without the *error* function. In the next line:

(setvar "osmode" 0)

The ABC’s of AutoLISP by George Omura

182

Copyright © 2001 George Omura,,World rights reserved

the osnap mode is set back to 0. Next, the error message supplied by AutoLISP is printed to the AutoCAD prompt:

(princ msg)

The last princ prevents the error message from appearing twice in the prompt.

This works very nicely assuming that you always have osnap set to "none". But suppose your osnap setting varies
during your editing session and you want your function to return to whatever the current setting is at the time a
program is issued. Figure 6.16 shows the Break2 program again with some additional code that helps restore the
osnap setting to its previous setting regardless of what it may have been.

(defun *error* (msg)
(setvar "osmode" *osnap)
(princ msg)
(princ)
)

(defun c:break2 (/ pt1 pt2 pt3 pt4 pt0 ang1 dst1)
 (setq *osnap (getvar "osmode"))
 (setvar "osmode" 512) ;near osnap mode
 (setq pt1 (getpoint "\nSelect object: ")) ;get first break point
 (setq pt2 (getpoint pt1 "\nEnter second point: ")) ;get second break point
 (setvar "osmode" 128) ;perpend osnap mode
 (Setq pt3 (getpoint pt1 "\nSelect parallel line: "));get 2nd line
 (Setvar "osmode" *osnap) ;no osnap mode
 (setq ang1 (angle pt1 pt3)) ;find angle btwn lines
 (setq dst1 (distance pt1 pt3)) ;find dist. btwn lines
 (setq pt4 (polar pt2 ang1 dst1)) ;derive pt4 on 2nd line
 (command
 "break" pt1 pt2 ;break 1st line
 "break" pt3 pt4 ;break 2nd line
 "line" pt1 pt3 "" ;close ends of lines
 "line" pt2 pt4 ""
)
)

Figure 8.16: The C:BREAK2 program modified to handle any osnap setting

The line:

(setq *osnap (getvar "osmode"))

is added to the beginning of the program. This creates a global variable *osnap which holds the osnap code that
determines the current osnap setting. The expression that returns the osnap mode to "none":

The ABC’s of AutoLISP by George Omura

183

Copyright © 2001 George Omura,,World rights reserved

(setvar "osmode" 0)

is replaced by one that sets the osnap mode to whatever was saved as *osnap:

(setvar "osmode" *osnap)

This same expression appears in the *error* function so in the event of a cancellation by the user, the osnap mode is
set back to its previous setting.

 Organizing Code to Reduce Errors
The error handling function shown here as an example could be incorporated into your Acad.lsp file so it is available
for any AutoLISP error that may occur. You can also enlarge it to include other settings or variables that may
require resetting. But the way a program is organized can affect the impact an error has. For example, we could have
written the C:SEQ program in a slightly different way. Figure 8.17 shows the program with its expressions in a
slightly different order.

(defun deflt (str1 def)
(strcat str1 " <" (rtos def 2 4) ">: ")
)

(defun C:SEQ (/ pt1 currnt last spc)
(if (not *seqpt)(setq *seqpt 2.0)) ;setup global default
(setq pt1 (getpoint "\nPick start point: "))
(setq spc (getdist (deflt "\nEnter spacing" *seqpt)))
(if (not spc)(setq spc *seqpt)(setq *seqpt spc)) ;set global variable
(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))
(setq stspc (rtos spc 2 2))
(setq stspc (strcat "@" stspc "<0"))
(command "text" pt1 "" "" currnt)
 (repeat (- last currnt)
 (setq currnt (1+ currnt))
 (command "text" stspc "" "" currnt)
)
)

Figure 8.17: The C:SEQ program in a different order

The ABC’s of AutoLISP by George Omura

184

Copyright © 2001 George Omura,,World rights reserved

The conditional expression:

(if (not spc)(setq spc *seqpt)(setq *seqpt spc))

immediately follows the expression that prompts for the spacing distance. This placement seems to be a natural
place for this expression since it immediately sets the variable spc or *seqpt to a value once the value of spc is
obtained. But what happens if the user decides to cancel the program after this expression is evaluated. If the user
inputs a new value for the number spacing, then the global variable *seqpt holds that new value even though the
program has been canceled. The next time the user uses the C:SEQ program, the value that was entered previously is
the new default value. Even though the program was cancelled the value entered for the number spacing became the
new default.

This may or may not be a problem but for many, issuing a cancel means canceling the affects of any data entry made
during the command. So to avoid having the global variable *seqpt changed when the program is cancelled, the
conditional expression is moved to a position after all the prompts are issued. This way, the user can cancel the
program with no affect to the *seqpt variable.

 Debugging Programs
While we are on the subject of errors, We should discuss the debugging of your programs. As you begin to write
programs on your own, you will probably not get them right the first time. Chances are, you will write a program
then run it only to find some error message appear. Then you must review your program to try and find the
offending expression.

 Common Programming Errors
Most of the time, errors will be due to the wrong number of parentheses or the wrong placement of parentheses
within your program. If this is the case, you usually get the error message:

error: malformed list

or

error: extra right paren

There aren't any simple solutions to this problem other than checking your program very carefully for number and
placement of parentheses. Perhaps the best thing to do is to print out your program. It is often easier to spot errors on
paper than it is to spot them on your computer screen.

Since a misplaces paren can cause a variety of problems, printing out your program and checking the parentheses
placement is the best start.

Another common error is to mis-spelled symbols. This is especially a problem with confusing lower case l's with 1's
and zeros with o's. The full range of typos is possible and often hard to detect. Again, the best solution is to print out
your program and take a careful look.

The ABC’s of AutoLISP by George Omura

185

Copyright © 2001 George Omura,,World rights reserved

If you get the message:

error: Insufficient string space

chances are, you didn't provide a closing double quote in a string value as in the following:

(menucmd "p1=*)

Also, prompt strings cannot exceed 100 characters.

Finally, it is common to try to apply a wrong data type to a function. We have mentioned that one common error is
to give a variable a string value which happens to be a number:

(setq str1 "1")

Later, you might attempt to use this string as an integer in another function:

(1+ str1)

This results in a bad argument type error.

For your convenience, we have included appendix B that contains the AutoLISP error messages and their meaning.
You may want to refer to it as you debug your programs.

 Using Variables as Debugging Tools
AutoLISP helps you find errors by printing to the screen the offending expression along with the error message. But
sometimes this is not enough. If you find you are having problems with a program, you can check the variables in
the program using the exclamation point to see what values they have obtained before the program aborted. If you
have an argument list, you may want to keep it empty until you finish debugging your program. That way, you can
check the value of the programs's variables. Otherwise, the values of the variables will be lost before you have a
chance to check them.

If you have a particularly lengthy program, you can use the princ function to print variables to the prompt line as th
program runs. By placing the princ function in strategic locations within your program, you can see dynamically
what your variables are doing as the program runs. You can also have the princ function print messages telling you
where within your program it is printing from.

 Conclusion
As you begin to write you own program, many of the issues brought to light in this chapter will confront you. We
hope that by introducing these topics now, you will have a better grasp of what is required in a program design. By
knowing what is possible within AutoCAD, you can develop programs that simplify the users efforts.

The ABC’s of AutoLISP by George Omura

186

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoLISP by George Omura

187

Copyright © 2001 George Omura,,World rights reserved

Chapter 9: Using Lists to store data
Introduction

Getting Data from a List

Using Simple Lists for Data Storage

Evaluating Data from an entire list at once

Using Complex Lists for Data Storage

Using Lists for Comparisons

Location Elements in a List

Searching Through a List

Using an Element of a List as a Marker

Finding the Properties of AutoCAD Objects

Using Selection Sets and Object Names

Understanding the Structure of Property Lists

Changing the Properties of AutoCAD Objects

Getting Object Names and Coordinates Together

Conclusion

Introduction
We mentioned that there are actually two classes of lists, those meant to be evaluated, which are called expressions
or forms, and lists that are repositories for data such as a coordinate list. No matter what the type of list you are
dealing with, you can manipulate lists to suite the needs of your program. In this section we will look at the general
subject of lists and review some of the functions that allow you to manipulate them.

There are a several functions provided to access and manipulate lists in a variety of ways. You have already seen car
and cdr. Table 9.1 shows a list of other functions with a brief description of their uses.

The ABC’s of AutoLISP by George Omura

188

Copyright © 2001 George Omura,,World rights reserved

Function Use

(mapcar function list list...) Apply elements of lists as arguments, to a function. Each element in the list is
processed until the end of the list is reached

(apply function list) Apply the entire contents of a list to a function.

(foreach symbol list
expression)

Sets individual elements of a list to symbol then evaluates an expression containing
that symbol. Each element in the list is processed until the end of the list is reached.

(reverse list) reverses the order of elements in a list.

(Cons element list) Adds a new first element to a list. The element can be any legal data type.

(append list list ...) Takes any number of lists and combines their elements into one list.

(last list) Finds the last element of a list.

(length list) Finds the number of elements in a list.

(member element list) Finds the remainder of a list starting with element.

(nth integer list) Finds the element of a list where integer is the number of the desired element within
the list. The first item in a list is number 0.

So far, we have concentrated on the use of lists as a means of structuring and building your programs. But lists can
also be use as repositories for data. You have already seen how coordinate list are used to store the x and y
coordinate values of a point. Lists used for storing data can be much larger than the coordinate example. Consider
the mdist program you saw in chapter 5. This program uses the append function to constantly add values to a list.
This list is then evaluated to obtain the sum of its contents (see figure 9.1).

(Defun C:MDIST (/ dstlst dst)
(setq dstlst '(+ 0))
 (while (setq dst (getdist "\nPick point or Return to exit: "))
 (Setq dstlst (append dstlst (list dst)))
 (princ (Eval dstlst))
)
)

Figure 9.1: The Mdist program

We have an example here of a list being both a repository of data and a form or a list that can be evaluated. This is
accomplished by starting the list with a functions, in this case, the plus function. Each time a value is appended to

The ABC’s of AutoLISP by George Omura

189

Copyright © 2001 George Omura,,World rights reserved

the list, it is evaluated to get the sum of the numeric elements of that list.

Suppose your have a list that does not contain a function, but you want to apply some function to it. The following
sections discusses ways you can use the functions listed in table 9.1 perform computations on lists.

 Getting Data from a List
In the mdist program, a function was applied to a list to get the total of all the numbers in that list. Functions like
plus, minus, multiply and divide accept multiple numeric values for arguments. But what if you want to apply a list
to a function that will only take single atoms for arguments.

Using Simple Lists for Data Storage
Mapcar is used where you want to use a list as a queue for arguments to a function. It allows you to perform a
recursive function on a list of items. For example, suppose you want the sequential numbering program from chapter
5 to place the numbers at points you manually select rather than in a straight line. Figure 9.2 shows a program that
does this:

;Program to write sequential numbers -- Seqrand.lsp
(defun C:SEQRAND (/ rand currnt ptlst)
(setvar "cmdecho" 0) ;no echo to prompt
(setq rand T) ;set up rand
(setq currnt (getint "\nEnter first number in sequence: "))
(while rand ;while point is picked
 (setq rand (getpoint "\nSelect points in sequence: "));get point
 (setq ptlst (append ptlst (list rand))) ;add point to list
)
 (mapcar
 '(lambda (rand) ;define lambda expression
 (if rand ;if point (rand) exists
 (progn
 (command "text" rand "" "" currnt) ;place number at point rand
 (setq currnt (1+ currnt)) ;get next number
)
)
)
 ptlst ;list supplied to lambda
)
(setvar "cmdecho" 1) ;echo to prompt on
(princ)
)

Figure 9.2: Program to place sequential number in random locations

The ABC’s of AutoLISP by George Omura

190

Copyright © 2001 George Omura,,World rights reserved

In the C:SEQRAND program, the following while expression is used to allow the user to pick random point
locations for the numbered sequence:

(while (not (not rand))

(setq rand (getpoint "\nSelect points in sequence: "))

(setq ptlst (append ptlst (list rand)))

)

This while expression creates the list ptlst comprised of points entered by the user. The user see the prompt:

Select points in sequence:

each time he or she selects a point. Once the user is done, the mapcar expression reads the list of points and applies
them to a function that enters the sequence of numbers at those points:

(mapcar

'(lambda (rand)

(if (not (not rand))

(progn

(command "text" rand "" "" currnt)

(setq currnt (1+ currnt))

)

)

)

ptlst

)

In this set of expressions, mapcar applies the elements of the list ptlst to a lambda expression. You may recall that a
lambda expression is like a function created using defun. The difference being that lambda expressions have no
name. The lambda expression above uses the single argument rand and, using the AutoCAD text command, writes
the variable currnt to the drawing using rand as a coordinate to place the text. The lambda expression also adds 1 to
the currnt variable increasing the number being added to the drawing by 1.

The ABC’s of AutoLISP by George Omura

191

Copyright © 2001 George Omura,,World rights reserved

Mapcar takes the list of points ptlst and, one at a time, applies each element of the list to the variable rand in the
lambda expression until all the elements of the list have been applied. The if conditional expression is added to the
lambda expression to check for the end of ptlst.

Mapcar can apply more than one lists to a function as shown in the following expression:

(mapcar 'setvar

'("cmdecho" "blipmode" "osnap" "expert")

'(0 0 512 1)

)

Here mapcar applies several AutoCAD system variables to the setvar function. One element is taken from each list
and applied to setvar. "Cmdecho" is set to 0, "blipmode is set to 1, "osmode" is set to 512, the nearest mode, and
"expert" is set to 1.

 Evaluating Data from an Entire List at Once
Apply is similar to mapcar in that it allows you to supply a list as an argument to a function. But rather than
metering out each item in the list one by one, apply gives the entire contents of a list as an argument all at once. As
an example, you could use apply in the Mdist function to add distances.

;Program to measure non-sequential distances
(defun MDIST (/ dstlst dst)
 ;while loop to obtain list of points--------------------------------------
 (while (setq dst (getdist "\nPick distance or Return to exit: "))
 (Setq dstlst (append dstlst (list dst))) ;append new point to list
 (princ (apply '+ dstlst)) ;print current total
);end while;--
);end MDIST

Figure 9.3: The Mdist function using the apply function.

In this example, apply is given the list of distances dstlst which it applies to the plus function. If you load and run
this program, it works no differently from the earlier version of MDIST.

The ABC’s of AutoLISP by George Omura

192

Copyright © 2001 George Omura,,World rights reserved

 Using Complex Lists to Store Data
In chapter 8, you created an error function that reset the osmode system variable when an error occurred. The
problem with that error function was that it was too specific. It only worked for certain conditions namely, to restore
the osmode system variable to its previous setting. But you can create a function that will help you handle system
variable settings in a more general way using the length function.

The length function allows you to find the length of a list. This function is often used in conjunction with the repeat
function to process a list. The following function converts a list of system variables to a list containing both the
variable and its current setting:

(defun GETMODE (mod1)

(setq *mod2 '())

(repeat (length mod1)

(setq *mod2

(append *mod2

(list (list (car mod1) (getvar (car mod1))))

)

)

(setq mod1 (cdr mod1)))

)

Using this function, you can store the current system variable settings in a list. Figure 9.4 shows the C:BREAK2
program from chapter 8 with modifications to add the getmode function.

The ABC’s of AutoLISP by George Omura

193

Copyright © 2001 George Omura,,World rights reserved

;function to save system variable settings----------------------------------
(defun GETMODE (mod1)
 (setq *mod2 '()) ;create global variable to store settings
 (repeat (length mod1) ;find length of variable list and repeat
 (setq *mod2 ;build *mod2 list
 (append *mod2
 (list (list (car mod1) (getvar (car mod1))))
)
)
 (setq mod1 (cdr mod1)) ;go to next element in list
);end repeat
)

;function to restore system variable settings-------------------------------
(defun SETMODE (mod1)
 (repeat (length mod1) ;find length of list and repeat
 (setvar (caar mod1) (cadar mod1)) ;extract setting info and reset
 (setq mod1 (cdr mod1)) ;go to next element in list
);end repeat
)
;function for error trap ---
(defun *error* (msg)
 (setmode *mod2) ;reset system variables
 (princ msg) ;print error message
 (princ)
)

;program to break circle into two arcs--------------------------------------
(defun C:BREAK2 (/ pt1 pt2 pt3 pt4 pt0 ang1 dst1)
 (getmode '("osmode" "orthomode" "cmdecho")) ;saves system vars.
 (mapcar 'setvar '("osmode" "orthomode" "cmdecho") ;set vars. for funct.
 '(512 0 0)
)
 (setq pt1 (getpoint "\nSelect object: ")) ;get first break point
 (setq pt2 (getpoint pt1 "\nEnter second point: ")) ;get second break point
 (setvar "osmode" 128) ;perpend osnap mode
 (Setq pt3 (getpoint pt1 "\nSelect parallel line: "));get 2nd line
 (setq ang1 (angle pt1 pt3)) ;find angle btwn lines
 (setq dst1 (distance pt1 pt3)) ;find dist. btwn lines
 (setq pt4 (polar pt2 ang1 dst1)) ;derive pt4 on 2nd line
 (command
 "break" pt1 pt2 ;break 1st line
 "break" pt3 pt4 ;break 2nd line
 "line" pt1 pt3 "" ;close ends of lines
 "line" pt2 pt4 ""
)
 (setmode *mod2) ;reset system vars.
)

Figure 9.4: Revised BREAK2 program

The ABC’s of AutoLISP by George Omura

194

Copyright © 2001 George Omura,,World rights reserved

The following expression has been added to the BREAK2 program:

(getmode '("osmode" "orthomode" "cmdecho"))

Here, a list of system variables is supplied as an argument to the getmode function. The following explains what
getmode does with this list.

The first expression in getmod creates a list to be appended to. The second expression is a recursive one using the
repeat function:

(setq *mod2 '())

(repeat (length mod1)

Repeat uses an integer argument to determine the number of time it is to repeat the evaluation of its other arguments.
Here, length is used to find the length of mod1 which is a local variable that has the list of system variables passed
to it. Length finds the number of elements in the list mod1, which in our example is 3, and passes that value to the
repeat function (see Figure 9.5).

Figure 9.5: Using length and repeat in the getmode function

Repeat then processes the following set of expressions 3 times:

 (setq *mod2

(append *mod2 (list (list (car mod1) (getvar (car mod1)))))

)

(setq mod1 (cdr mod1)))

The ABC’s of AutoLISP by George Omura

195

Copyright © 2001 George Omura,,World rights reserved

This set of expressions takes an element of the list mod1 and finds the current setting for that element.

(getvar (car mod1))

Then the setting value is combined with the setting name to form a two element list:

(list (car mod1) (getvar (car mod1)))

This new list is then appended to the list *mod2 and *mod2 is assigned the value of the new appended list:

(setq *mod2

(append *mod2 (list (list (car mod1)(getvar car mod1)))))

)

Finally the first element of mod1 is removed in preparation for the next iteration:

(setq mod1 (cdr mod1)))

Remember that cdr returns a copy of a list with its first element removed. The whole process is then repeated again.

When the getmode is done, a global variable called *mod2 is created. Mod2 might look like this:

(("osmode" 0)("orthomode" 1)("cmdecho" 1))

In this list, each element is another list that contains the mode as its first element and its current setting as its second
element.

Once the desired settings are saved, you can go on to change the settings to suite your program. In the case of the
C:BREAK2 program, "osmode" is changed to 512, the nearest setting, "orthomode" is set to 0, which turns off the
orthomode, and "cmdecho" is set to 0 which controls command echoing to the prompt line.

When BREAK2 has done its work, you need a way to restore your saved settings. The setmode function in figure
9.4 will restore the settings saved by the Getmodes function:

(Defun setmode (mod1)

(repeat (length mod1)

(setvar (caar mod1)(cadar mod1))

(setq mod1 (cdr mod1))

)

)

The ABC’s of AutoLISP by George Omura

196

Copyright © 2001 George Omura,,World rights reserved

This function also uses length and repeat to perform a recursion. In this case, the recursive function consist of two
expressions:

(setvar (caar mod1) (cadar mod1))

(setq mod1 (cdr mod1))

The first of these expressions takes the first element of the list of saved settings then applies its two elements to
setvar. In our example, the result of this combination looks like this:

(setvar (caar mod1)(cadar mod1)) = (setvar "osmode" 0)

The result is an expression that sets "osmode" to 0. The next expression removes the first element from the list of
settings then the processes is repeated.

The setmode function is placed at the end of the C:BREAK2 program to reset the variables. It is also placed in the
error function. As long as getmode is used in a function to save system variables, The *error* function shown in
figure 9.4 will work to restore system variables in the event of a canceled AutoLISP program. With the addition of
the getmode and setmode functions, you have a general system for maintaining system variables.

Using Lists for Comparisons
Like mapcar, foreach applies individual elements of a list to a function. But foreach only accepts one list. Foreach is
often used to test elements of a list for a particular condition. For example, you could test a list of coordinates to sort
out those above another datum point:

(foreach n

'((4.00 1.00) (10.09 1.01) (11.96 6.80)

(7.03 10.38) (2.11 6.79) (4.00 1.00))

(if (> (cadr n) 2)(Setq newlist (append newlist (list n))))

)

This function simply checks the y value of each coordinate against the value 2. If y is greater than 2, the coordinate
is added to a new list that contains only coordinates whose y value is greater than 2.

 Locating Elements in a List
You won't always want to use all the elements of a list in your programs. In many instances, you will want to obtain
a specific element from a list. There are two functions, member and nth, that can help you find specific elements in a
list.

The ABC’s of AutoLISP by George Omura

197

Copyright © 2001 George Omura,,World rights reserved

Note:

In the following discussion, an obsolete component of AutoLISP called Atomlist will be discussed. You can think of
Atomlist as a very big list. Just think of Atomlist as any list in which you want to place a marker that you can later
refer to..

Searching Through Lists
To see how these two functions work, look at a program called Clean. Clean is an older program intended for earlier
versions of AutoCAD that had limited memory resources. The purpose of Clean was to remove unused user-defined
functions in order to free-up memory.

;program to clean symbols and functions from atomlist and close open files
;---
(defun C:CLEAN (/ i item)
 (setq i 0) ;set up counter
 ;while not at the end of atomlist do...
 (while (not (equal (setq item (nth i atomlist)) nil))
 (if (= (type (eval item)) 'FILE) ;if item is a file
 (close (eval item)) ;close the file
);end IF
 (setq i (1+ i)) ;add 1 t counter
);end WHILE
 (setq atomlist (member 'C:CLEAN atomlist)) ;redefine atomlist
'DONE ;without symbols
) ;previous to C:CLEAN
 ;and print DONE

Figure 9.6: The CLEAN program.

Before we analyze this program, we must first discuss the atomlist. Atomlist was a special list used to store data in
earlier versions of AutoCAD. It contains the names all of the built-in AutoLISP functions. It was also used to store
any user defined functions and symbols. If you are using Release 11 or earlier, you can view its contents by first
flipping the screen to text mode, then entering:

!atomlist

You will get a listing of all the user defined and built in AutoLISP functions currently loaded into AutoCAD.

The list contains all of the AutoLISP functions we have discussed so far plus a few we have not. If you are using

The ABC’s of AutoLISP by George Omura

198

Copyright © 2001 George Omura,,World rights reserved

Acad.lsp to load some of your own functions, they will also appear at the top of the list. Whenever you create a new
function or symbol, it is added to the beginning of atomlist. If you have an older version of AutoCAD, try entering
the following:

(setq myfunc "mufunc")

If you enter !atomlist. you will see that myfunc is added to the list. The more functions you add, the larger atomlist
gets and more memory is used to store symbols and functions.

If the C:CLEAN function is included in your Acad.lsp file, it is also added to the atomlist at startup time.
C:CLEAN's purpose is twofold. First, it closes any files that may have been opened and inadvertently left open. This
might occur if the open function was used to open an ASCII file and due to a function being canceled, the file was
never closed. As we mentioned, this can cause loss of data to the open file. Second, C:CLEAN clears the atomlist of
any function that is added after it thereby recapturing memory space.

In order to find and close any open files, C:CLEAN uses the while function in conjunction with the if and type
functions. First, a counter is set to 0. the symbol i is used as a counting device:

(setq i 0)

Next, a while expression checks to see if an item of the atomlist is equal to nil. The nth function is used to read each
element of atomlist.

(nth i atomlist)

Nths syntax is:

(nth [integer][list])

where integer is the numeric position of an element in list. In C:CLEAN, nth returns the element whose position
within atomlist is represented by i. The variable i is a counter to which 1 is added each time the while function loops
through the expressions it contains. The net result is that each element of the list atomlist is compared to nil. While
continues to loop through its expressions until such a condition is met (see Figure 9.7).

Figure 9.7: The while loop in C:CLEAN

The ABC’s of AutoLISP by George Omura

199

Copyright © 2001 George Omura,,World rights reserved

Notice that the element returned by nth is assigned to the variable item. This allows the next if conditional function
to test the element to see if it is a file descriptor:

(if (= (type (eval item)) 'FILE)

 The eval function is used to force an evaluation of the variable item to extract its value. Eval can be used to find the
value of a nested symbol, that is, a symbol whose value is also a symbol. Eval is the basic mechanism by which
AutoLISP evaluates expressions. It is always being applied to expressions by AutoLISP. You could think of eval as
the opposite of quote.

The type function above returns the data type of the value of item. If eval is not used, type would return the data type
of the symbol item rather than the data type of items value (see figure 9.8).

Figure 9.8: Using eval to force one level of evaluation

The ABC’s of AutoLISP by George Omura

200

Copyright © 2001 George Omura,,World rights reserved

The following table gives a list of the values returned by type and their meaning:

Value Meaning

REAL real number

FILE file descriptor

STR string

INT integer

SYM symbol

LIST list and user defined functions

SUBR AutoLISP function

PICKSET selection set

ENAME object name

PAGETB function paging table

If item turns out to be equal to a file descriptor or FILE, then the next line closes that file:

(close (eval item))

Using an Element of a List as a Marker

Once C:CLEAN has finished closing any open files, then it proceeds to redefine atomlist:

(setq atomlist (member 'C:CLEAN atomlist)

Here, the function member is used to find a list whose elements are all the elements of atomlist beginning with
C:CLEAN. The expression then assigns that list to atomlist. The symbol C:CLEAN acts like a marker within the list
telling the member function where to begin the list. The net affect is that of clearing atomlist of all the symbols and
functions that were added to atomlist after C:CLEAN.

Members syntax is:

(member [element][list])

Member returns a list whose elements are the same as those of list starting with element.

The ABC’s of AutoLISP by George Omura

201

Copyright © 2001 George Omura,,World rights reserved

 Finding the Properties of AutoCAD Objects
One of the most powerful features of AutoLISP is its ability to access the properties of drawing objects. You can
find properties such as the endpoint coordinates of lines, their layer, color and linetypes, and the string value of text.
You can also directly modify these properties.

Object properties are accessed using two AutoLISP data types, object names and selection sets. Object names are
similar to symbols in that they are a symbolic representation of an object. An object name is actually a device used
to point to a record in a drawing database. This database record holds all the information regarding the particular
object. Once you knows an object name, you can access the information stored in the object's record.

 Using Selection Sets and Object Names
A selection set is a collection of object names. Selection sets can contain just one object name or several. Each name
in the selection set has a unique number assigned to it from zero to 1 minus the number of names in the set.

To find out how you access this object information, lets look at the C:EDTXT PROGRAM used in chapter 7.

As you may recall, this program allows you to edit a line of text without having to enter the entire line. The fourth
line in C:EDTXT does the work of actually extracting the text string from the database:

(setq oldtxt (gettxt))

Here, the program makes a call to a user defined function called gettxt:

(defun gettxt ()

(setvar "osmode" 64)

(setq pt1 (getpoint "\nPick text to edit: "))

(Setvar "osmode" 0)

(setq oldobj (entget (ssname (ssget pt1) 0)))

(setq txtstr (assoc 1 oldobj))

(cdr txtstr))

Gettxt first finds a single point pt1 that locates the text to be edited:

(setvar "osmode" 64)

(setq pt1 (getpoint "\nPick text to edit: "))

(Setvar "osmode" 0)

Next, the real work of finding the object is done. The next line uses several functions to extract the object name from
the drawing database:

The ABC’s of AutoLISP by George Omura

202

Copyright © 2001 George Omura,,World rights reserved

(setq oldobj (entget (ssname (ssget pt1) 0)))

This innocent looking set of expressions does a lot of work. It first creates a selection set of one object:

(ssget pt1)

;function to find text string from text entity-------------------------------
(defun gettxt ()
(setvar "osmode" 64) ;set osnap to insert
(setq pt1 (getpoint "\nPick text to edit: ")) ;get point on text
(Setvar "osmode" 0) ;set osnap back to zero
(setq oldobj (entget (ssname (ssget pt1) 0))) ;get entity zero from prop.
(setq txtstr (assoc 1 oldobj)) ;get list containing string
(cdr txtstr) ;extract string from prop.
)
;function to update text string of text entity-------------------------------
(defun revtxt ()
(setq newtxt (cons 1 newtxt)) ;create replacement propty.
(entmod (subst newtxt txtstr oldobj)) ;update database
)
;program to edit single line of text---
(defun C:CHTXT (/ count oldstr newstr osleng otleng oldt old1
 old2 newtxt pt1 oldobj txtstr oldtxt)
(setq count 0) ;setup counter to zero
(setq oldtxt (gettxt)) ;get old string from text
(setq otleng (strlen oldtxt)) ;find length of old string
(setq oldstr (getstring T "\nEnter old string ")) ;get string to change
(Setq newstr (getstring T "\nEnter new string ")) ;get replacement string
(setq osleng (strlen oldstr)) ;find length of substring-
 ;while string to replace is not found, do... to be replaced
 (while (and (/= oldstr oldt)(<= count otleng))
 (setq count (1+ count)) ;add 1 to counter
 (setq oldt (substr oldtxt count osleng)) ;get substring to compare
);end WHILE
 ;if counting stops before end of old string is reached...
 (if (<= count otleng)
 (progn
 (setq old1 (substr oldtxt 1 (1- count))) ;get 1st half of old string
 (setq old2 (substr oldtxt (+ count osleng) otleng));get 2nd half
 (setq newtxt (strcat old1 newstr old2)) ;combine to make new string
 (revtxt) ;update drawing
)
 (princ "\nNo matching string found.") ;else print message
);end IF
(PRINC)
);END C:EDTXT

Figure 9.9: The C:EDTXT program

The ABC’s of AutoLISP by George Omura

203

Copyright © 2001 George Omura,,World rights reserved

You may recall from chapter 4 that ssget accepts a point location, to find objects for a selection set. If you entered
the expression above at the command prompt, and pt1 has been previously defined as a point nearest an object, you
would get the name of a selection set. Try the following exercise:

1. Open an AutoCAD file and place the following text in the drawing:

For want of a battle, the kingdom was lost.

2. Enter the following expression:

(setq pt1 (getpoint "\nPick the text: "))

3. Use the insert osnap override option from either the side or pull down menu and pick the text.

4. Enter the following expression:

(ssget pt1)

You will get a message that looks similar to the following:

<Selection set: 1>

This is a selection set. The number following the colon in the above example would be different depending
on whether previous selections sets have been created.

5. Once a selection set has been created, ssname is used to find the object name. Enter the following:

(ssname (ssget pt1) 0)

Ssname will return the object name of a single object in the selection set. If you enter the expression above, you get
an object name that looks similar to the following:

<Object name: 600000c8>

Just as with selection sets, the number that follows the colon will different depending on the editing session.

The syntax for ssname is:

(ssname [selection set][integer])

The selection set can be gotten from a symbol representing the selection set or directly from the ssget function as in
our example above. The integer argument tells ssname which object to select within the selection set. In our
example, there is only one object, so we use the integer 0 which represents the first object in a selection set. If there
were several objects in the selection set, say 4, we could use an integer from 0 to 3.

At the next level, the function entget does the actual database extraction. Enter the following:

(setq oldobj (entget (ssname (ssget pt1) 0)))

The ABC’s of AutoLISP by George Omura

204

Copyright © 2001 George Omura,,World rights reserved

You will get a list revealing the properties of the text.

((-1 . <Entity name: 20a0598>) (0 . "TEXT") (5 . "33") (100 .

"AcDbEntity") (67 . 0) (8 . "0") (100 . "AcDbText") (10 -0.147023 2.84992 0.0)

(40 . 0.2) (1 . "For want of a battle, the kingdom was lost") (50 . 0.0) (41 .

1.0) (51 . 0.0) (7 . "STANDARD") (71 . 0) (72 . 0) (11 0.0 0.0 0.0) (210 0.0

0.0 1.0) (100 . "AcDbText") (73 . 0))

This list obtained using entget is called a property list. Entgets' syntax is:

 (entget [object name])

 Entget returns a list containing the object's properties. Property lists consists of other lists whose first element is an
integer code. The code represents a particular property like an objects layer, color, linetype or object type. Property
lists are a class of list called association lists.

You may recall that earlier in this chapter, you constructed a list of system variables. that list looked like the
following:

 (("osmode" 0)("orthomode" 1)("cmdecho" 1))

 This is also an association list. each element of the list is a list of two elements, the first of which can be considered
a keyword.

Each list within an object's property list starts with an integer code. That integer code is the key-value to that list
otherwise known as the group code. The group code is associated with a particular property. For example, the group
code 1 in associated with the string value of a text object. The 10 group code is associated with the insertion point of
the text. Table 9.2 shows the group codes for text and their meaning.

The ABC’s of AutoLISP by George Omura

205

Copyright © 2001 George Omura,,World rights reserved

Code Meaning

-1 Entity name

0 Entity type ("TEXT", "LINE", "ARC", etc.

7 Text style

8 Layer

10 Insertion point

11 Center alignment point (for centered text)

21 Right alignmenet point (for right-justified text)

31 Second alignment point (for fit or aligned text)

40 Text height

41 X scale factor

50 Rotation angle

51 Oblique angle

71 Text mirror code (2, mirrored in x axis; 4, mirrored in y axis)

72 Text alignment code (0, left justified; 1, center at baseline;2, right justified; 3, text uses
align option; 4, centered at middle; 5, text uses fit option)

210 3-D extrusion amount in x, y, or z direction

If you are familiar with the AutoCAD DXF file format and coding system, then these group codes should be
familiar. Appendix C gives a detailed listing of these codes if you want to know more.

Now that our expression has retrieved the property list, we need a way to pull the information out of the list. A
function for this purpose is found in the next line. Enter the following:

(setq txtstr (assoc 1 oldobj))

In the previous expression, the property list is assigned to the variable oldobj. In the above expression, we see a new
function called assoc:

(assoc 1 oldobj)

The ABC’s of AutoLISP by George Omura

206

Copyright © 2001 George Omura,,World rights reserved

This expression returns the list:

(1 . "For want of a battle, the kingdom was lost")

Remember that oldobj is the variable for the property list of the text you selected earlier.

The Syntax for Assoc is:

(assoc [key-value] [association list])

Assoc looks through an association list and finds the list whose first value is the key-value. It then returns the list
containing the key-value.

In the case of our property list example, assoc looks through the property list oldobj and finds the list whose first
element is the group code 1 then it returns that list. The list returned by assoc is assigned to the symbol txtstr.
Finally, cdr is applied to txtsrt to obtain the string value of the selected text. Enter the following:

(cdr txtstr)

The string value associated with the group code 1 is retrieved. Figure 9.10 diagrams the entire operation.

Figure 9.10: Diagram of property list extraction

The ABC’s of AutoLISP by George Omura

207

Copyright © 2001 George Omura,,World rights reserved

In summary, to find a particular property of an object, you must first create a selection set containing that object
using ssget, then extract the object name from the selection set using ssname, then extract the property list using the
object name through the function entget. Once you have gotten the property list, you can apply assoc to it to get the
specific property you want using group codes. Finally, cdr can be applied to the singled out propert to get the value
of the property.

Understanding the structure of Property Lists
The first thing you might have notice about the property list in the example above is that most of the sublists were
two element lists with a period separating the elements. This type of list is called a dotted pair. It is not a list in the
true sense of the term because many of the functions used to manipulate lists will not work on dotted pairs. For this
reason, dotted pairs are usually considered a data type in themselves.

You can use car and cdr on dotted pairs just as you would on lists. for example, you could enter the following:

(car '(A . B))

the symbol A is returned. You can also enter:

(cdr '(A . B))

and the symbol B is returned. Dotted pairs act slightly differently from regular lists. If cdr is applied to a normal list,
as the following:

(cdr '(A B))

a list, (B), is returned. But in the case of a dotted pair, the second element of the dotted pair is returned by itself, not
as part of a list.

You can create a dotted pair using the cons function. Normally, cons must have two arguments. The first is the
element to be added to the beginning of a list and the second is the list to be added to. Enter the following:

(cons 'A '(B))

The list (A B) is returned. You could think of cons as the opposite of cdr. But if the second argument to cons is not a
list, then a dotted pair is created. Enter the following:

(cons 'A 'B)

The dotted pair (A . B) is returned.

Cons and dotted pairs reflect the inner workings of AutoLISP and to explain these AutoLISP items thoroughly is
beyond the scope of this book. At the end of chapter 10, we mention a few sources for more information on the
general subject of LISP which can shed light on Cons and dotted pairs. For now, lets continue by looking at a
function that allows us to directly modify the AutoCAD drawing database.

The ABC’s of AutoLISP by George Omura

208

Copyright © 2001 George Omura,,World rights reserved

 Changing the properties of AutoCAD objects
Now that you have seen how object properties are found, it is a short step to actually modifying properties. To
update an object record in the drawing database, you redefine the objects property list then use the function entmod
to update the drawing database. Looking at the edtxt.lsp file again, we find the revtxt function:

(defun revtxt ()

(setq newtxt (cons 1 newtxt))

(entmod (subst newtxt txtstr oldobj))

)

The first thing revtxt does is use the cons function to create a dotted pair using the integer 1 for the first element and
the string value held by newtxt for the second. Newtxt is a string value representing the new text that is to replace
the old text oldobj. As we mentioned earlier, cons creates a dotted pair when both its arguments are atoms. The new
dotted pair looks like this:

(1 . "For want of a nail, the kingdom was lost.")

Notice that the structure of this list is identical to the list oldobj which was retrieved from the text property list
earlier.

The last line of the revtxt function does two things. first it uses the function subst to substitute the value of newtxt
for the value of txtstr in the property list oldobj:

(subst newtxt txtstr oldobj)

Substr requires three arguments. the first is the replacement item, the second is the item to be replaced, and the third
is the list in which the item to be replaced is found. Substr's syntax is as follows:

(subst [replacing item][item to be replaced][list containing item])

Subst returns a list with the substitution made.

Next, the function entmod updates the drawing database. It looks at the object name of the list that is passed to it as
an argument. This list must be in the form of a property list. It then looks in the drawing database for the object
name that corresponds to the one in the list. When it finds the corresponding object in the drawing database, it
replaces that database record with the information in entmod's property list argument. The user sees the result as a
new line of text.

 Getting an Object Name and Coordinate Together
In the gettxt function, a function could have been used that doesn't require the you obtain a selection set. Entsel will
find a single object name directly without having to use ssget to create a selection set. Since Entsel only allows the
user to pick a single object, it is best suited where a program or function doesn't require multiple selections of
objects.

The ABC’s of AutoLISP by George Omura

209

Copyright © 2001 George Omura,,World rights reserved

Here is gettxt using entsel:

(defun gettxt ()

(setq oldobj (entget (car (entsel "\nSelect object: "))))

(setq txtstr (assoc 1 oldobj))

(cdr txtstr)

)

Entsel acts like the get functions by allowing you to provide a prompt string. Instead of returning a number, string,
or point, entsel returns a list of two elements. The first element is an object name, and the second is a list of
coordinates specifying the point picked to select the object:

(<Object name: 60000012> (4.0 3.0 0.0))

Above is a sample of what is returned by entsel. Since our Gettxt function is only concerned with the object name,
car is used on the value returned from entsel:

(car (entsel "\nSelect object: "))

This expression replaces the ssget and ssname function used previously:

(ssname (ssget pt1) 0)

Also, since entsel pauses to allow the user to select an object, the getpoint expression can be eliminated along with
the setvar function.

 Conclusion
You have seen how lists can be used to manipulate data both as forms and as simple lists of information. AutoLISP
makes no distinction between a list that is an expression to be evaluated and a list that is used to store data. Once
you understand the methods for manipulating list, you can begin to develop some powerful programs.

In the next chapter, you will look in more detail at how you can access information directly from AutoCAD. You
will also look at how to access the property of complex objects such as blocks an polylines.

The ABC’s of AutoLISP by George Omura

210

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoLISP by George Omura

211

Copyright © 2001 George Omura,,World rights reserved

Chapter 10: Editing AutoCAD objects
Introduction

Editing Multiple Objects

Finding the Number of Objects in a Selection Set

Improving Processing Speed

Using Cmdecho to speed up your programs

Improving speed through direct database access

Filtering Objects for Specific Properties

Filtering a selection set

Selecting Objects Based on Properties

Accessing AutoCAD's System Tables

Conclusion

Introduction
In the last chapter you were introduced to the ssname and entget functions that, together with ssget, allowed you to
extract information about an object from the drawing database. In this chapter, you will learn how to perform
operations on several objects at once. Also, you will look at how to obtain information regarding a drawing's table
information which consists of layers and their settings, viewport, UCSs and other system options.

There are actually several functions that allow you to access the AutoCAD drawing database directly. Table Lists
the functions and gives a brief description of each.

The ABC’s of AutoLISP by George Omura

212

Copyright © 2001 George Omura,,World rights reserved

Function Description

(entnext [object name]) If used with no argument, entnext will return the object name of the first
object in the database. If an object name is given as an argument, entnext
returns the first sub-object of object name. A sub-object is an object
contained in a complex object such as a polyline vertex or a block attribute.

(entlast) Returns the object name of the last object added to the drawing database.

(entsel [prompt]) Prompts the user to select an object then returns a list whose first element is
the object's name and whose second element is the pick point used to select
the object. A prompt can be optionally added. If no prompt is used, the
prompt "Select object:" is given automatically.

(handent handle) Returns an object name given an object's handle.

(entdel object name) Deletes object name. If object has previously been deleted in the current
editing session, then the object named will be restored.

(entget object name) Returns the property list of object name

(entmod property list) Updates the drawing database record of the object whose object name appears
in the property list. The object name is the -1 group code sublist of the
property list.

(entupd object name) Updates the display of polyline vertices and block attributes that have been
modified using entmod.

You have already seen first hand how a few of these functions work. In this and the following chapter, you will
explore the use of several more of these very powerful editing tools.

Editing Multiple objects
The Edtxt program you looked at in the last chapter used ssget to obtain a single object. However, ssget is really
better suited to obtaining multiple sets of objects. You can use groups of objects collected together as selection sets
to perform some operation on them all at once.

To examine methods for editing multiple objects, we will look at a program that offers an alternate to the Extend
command. Though Extend allows you to extend several objects, you have to pick each object individually. Picking
objects individually allows for greater flexibility in the type of object you can extend and the location of the
extension. However, there are times when you will want to perform a multiple extend operations like extending
several lines to a another line.

The ABC’s of AutoLISP by George Omura

213

Copyright © 2001 George Omura,,World rights reserved

You can use AutoLISPs' ssget function to help you simplify the processing of multiple objects. Figure 10.1 shows a
sketch of how a multiple extend program might work manually and Figure 10.2 shows the actual program derived
from that sketch.

Figure 10.1: Sketch of process using extend.

The ABC’s of AutoLISP by George Omura

214

Copyright © 2001 George Omura,,World rights reserved

;Program to extend multiple lines - Mlext.lsp -------------------------------

(defun c:MLEXT (/ x y sset1 count pt1 pt2 int obj elst)
(graphscr) ;shift to graphics
(princ "\nSelect Boundary edge...") ;print prompt
(setq obj (car (entsel))) ;Get entity name
(setq x (getpoint "\nPick axis crossing lines to extend: "))
(setq y (getpoint x "\nPick endpoint: ")) ;get axis crossing lines
 (setq sset1 (ssget "c" x y)) ;get entities to extend
 (setq count 0) ;set counter
 (if (/= sset1 nil) ;test for selection set
 (while (< count (sslength sset1)) ;while still select. set
 (setq elst (entget (ssname sset1 count)) ;get entity name
 pt1 (cdr (assoc 10 elst)) ;get one endpoint
 pt2 (cdr (assoc 11 elst)) ;get other endpoint
 int (inters x y pt1 pt2) ;find intersection
);end setq of axis and line
 (command "extend" obj "" int "") ;command to extend line
 (setq count (1+ count)) ;go to next line count
);end while
);end if
);end defun

Figure 10.2: The Mlext.lsp file

1. Open a file called Mlext.lsp and copy the program from figure 10.2 into your file. Start AutoCAD and
open a new file called chapt10. Remember to add the equal sign at the end of the file name.

2. Draw the drawing shown in figure 10.3. The figure indicates the coordinate location of the endpoints so
you can duplicate the drawing exactly. Do not include the text indicating the coordinates.

3. Load the Mlext.lsp file and enter mlext at the command prompt. When you see the prompt

Select boundary edges...

Select object:

pick the line labeled boundary edge in figure 10.3. At the next prompt

Pick axis crossing lines to extend:

The ABC’s of AutoLISP by George Omura

215

Copyright © 2001 George Omura,,World rights reserved

4. A rubber banding line representing the crossing axis appears. Pick a point at coordinate 8,2. You can use
on the snap mode and dynamic coordinate readout to help you locate this point.

5. At the next prompt

Pick endpoint:

pick a point at coordinate 8,9. The lines that are crossed by the axis are extended to the boundary edge line.
Lets look at how this program works.

Figure 10.3: Lines drawn in the chapt10 file

Let's look at how this program works. The first expression in the program is:

(graphscr)

This simply flips the display to the graphics screen in case the user is currently in Text mode. Another function

The ABC’s of AutoLISP by George Omura

216

Copyright © 2001 George Omura,,World rights reserved

called Textscr does just the opposite. It flips the display into text mode if the current screen is in a graphics mode.

Next, the Mlext finds the line used to extend to:

(princ "\nSelect boundary edge...")

(setq obj (car (entsel)))

Here we use entsel to obtain the object name. Since entsel returns a two element list containing the name and pick
coordinate, we use car to extract the object name from the list. Also note that we use a prompt similar to the one
used by the extend command.

The next several lines creates a selection set of lines to extend:

(setq x (getpoint "\nPick axis crossing lines to extend: "))

(setq y (getpoint x "\nPick endpoint: "))

(setq sset1 (ssget "c" x y))

Here two points are obtained indicating an axis along which the lines to be extended lie. These points will be used
later to help find other pick points. Then ssget is used with the crossing option to create a selection set. The two
points defining the axis are used as the two corner points of the crossing window.

The next two lines do some setup work:

(setq count 0)

(if (/= sset1 nil)

The first of these two lines set a counting variable to zero. The next line checks to make sure a set of objects has
indeed been selected and a selection set created.

Once these things have been established, the actual work is done:

(while (< count (sslength sset1))

(setq elst (entget (ssname sset1 count))

(setq pt1 (cdr (assoc 10 elst)))

(setq pt2 (cdr (assoc 11 elst)))

(setq int (inters x y pt1 pt2))

(command "extend" obj "" int "")

(setq count (1+ count))

);end while

The ABC’s of AutoLISP by George Omura

217

Copyright © 2001 George Omura,,World rights reserved

This while expression is evaluated until the counter variable count reaches the total number of objects in the
selection set sset1. Each time the expression is evaluated, count is increased by one until count equals the length of
the selection set. Lets look at what each iteration of the while expression does.

 Finding the Number of Objects in a Selection Set

First, the while expression checks to see if the counting variable count is less than the total number of elements in
the selection set sset1. This is done through the sslength function:

(while)< count (sslength ssget1))

Sslength simply returns the number of objects in its selection set argument. The argument can be the actual
selections set or a symbol representing it. In our example, the symbol ssget1 is used. If count is less than the number
of objects, we know that we haven't processed all the objects in the selection set, in which case, the expressions that
follow are evaluated.

Next, the variable elst is given the object name of an object in the selection set:

 (setq elst (entget (ssname sset1 count)))

 The count variable is used by ssname to determine which object in the selection set sset1 is to be examined. Entget
then extracts the property list for that object and this list is assigned to the variable elst.

Next, the two endpoints of the objects are extracted:

(setq pt1 (cdr (assoc 10 elst)))

(setq pt2 (cdr (assoc 11 elst)))

 Here the Assoc function is used to extract the two endpoint coordinates from the property list. The group codes 10
and 11 are used by Assoc to locate the sublist in elst containing the coordinates in question (see appendix C for a full
list of group codes and their meaning). These coordinates are assigned to variables pt1 and pt2.

Once the endpoint's coordinates are found, a function called inters is used to find the intersection point of the current
object being examined and the object crossing axis derived in the beginning of the function:

(setq int (inters x y pt1 pt2))

Inters is a function finds the intersecting point of two pairs of coordinates. Inters syntax is:

(inters x1 y1 x2 x2)

where x1 and y1 are the x and y coordinates of one axis and x2
 and y2 are the coordinates of the second axis. Inters

returns a list containing the coordinates of the intersection of the two axes. In the Mlext program, this list is assigned
to the variable int.

Finally, the command function is used to invoke the extend command and extends the current object:

(command "extend" obj "" int "")

The ABC’s of AutoLISP by George Omura

218

Copyright © 2001 George Omura,,World rights reserved

 The first thing that the extend command asks for is the line to extend to. Here, obj is used to indicate that line. A
return is issued to end the selection process then a point value is entered to indicate both the line to be extended and
the location of the extend side. In this case, the intersection point of the line and the extend axis is used for this
purpose. Finally, a return is issued to end the extend command.

The last line in the while expression increases the value of count by one in preparation to get the next object in the
selection set.

(setq count (1+ count))

If count is still less than the number of objects in the selection set, the process repeats itself.

Since the Extend and Trim commands work in a nearly identical way, you can create a program that performs both
multiple extends or trims on lines by changing just a few elements in the Mlext program. Figure 10.4 shows such a
program called Etline. The elements that are changed from Mlext are indicated in the comment.

;program to extend or trim multiple lines --Etline.lsp------------------------

(defun c:ETLINE (/ x y u sset1 count pt1 pt2 int obj)
(graphscr) ;shift to graphics
(initget "Extend Trim") ;ADDED set keywords
(setq EorT (getkword "\Extend or <Trim>: ")) ;ADDED select operation
(if (equal EorT "")(setq EorT "Trim")) ;ADDED test operation choice
(princ "\nSelect boundary edge...") ;print prompt
(setq obj (car (entsel))) ;Get entity name
(setq x (getpoint "\nPick axis crossing lines to edit: "))
(setq y (getpoint x "\nPick endpoint: ")) ;get axis crossing lines
 (setq sset1 (ssget "c" x y)) ;get entities to extend
 (setq count 0) ;set counter
 (if (/= sset1 nil) ;test for selection set
 (while (< count (sslength sset1)) ;while still select. set
 (setq elst (entget (ssname sset1 count)) ;get entity name
 pt1 (cdr (assoc 10 elst)) ;get one endpoint
 pt2 (cdr (assoc 11 elst)) ;get other endpoint
 int (inters x y pt1 pt2) ;find intersection
);end setq of axis and line
 (if (equal EorT "Extend") ;ADDED Test for extend choice
 (command "extend" obj "" int "") ;extend line or...
 (command "trim" obj "" int "");ADDED trim line
);end if
 (setq count (1+ count)) ;go to next line count
);end while
);end if
);end progn

Figure 10.4: Program to perform both extend an trim functions

The ABC’s of AutoLISP by George Omura

219

Copyright © 2001 George Omura,,World rights reserved

Improving Processing Speed
When you begin to write program that act on several objects in a recursive fashion, speed begins to be an issue.
There are two things you can do to improve the speed of such recursive program. The first is to simply set the
cmdecho system variable to 0. the second is to modify the drawing database directly rather than rely on AutoCAD
commands to make the changes for your. In this section, you will look at both options first hand.

Using Cmdecho to Speed up Your Program
You may have noticed that when you ran the mlext program, the commands and responses of each line edit appeared
in the command prompt. The program is actually slowed by having to wait for AutoCAD to print its' responses to
the prompt line. You can actually double the speed of the Mlext program by simply adding the following expression
at the beginning of the program:

(setvar "cmdecho" 0)

Cmdecho is an AutoCAD system variable that controls the echo of prompts to the command prompt. When set to
zero, it will suppress any AutoCAD command prompts that would normally occur when AutoLISP invokes an
AutoCAD command.

Open the Mlext.lsp file and add the above line to the program. Also include the following line at the end of your
program to set the cmdecho variable back to 1.

(setvar "cmdecho" 1)

Your file should look like figure 10.5. This figure shows the Mlext program with the changes indicated by
comments.

The ABC’s of AutoLISP by George Omura

220

Copyright © 2001 George Omura,,World rights reserved

;Program to extend multiple lines - Mlext.lsp -------------------------------

(defun c:MLEXT (/ x y u sset1 count pt1 pt2 int obj)
(graphscr) ;shift to graphics
(setvar "cmdecho" 0) ;ADDED echo to prompt off
(princ "\nSelect Boundary edge...") ;print prompt
(setq obj (car (entsel))) ;Get entity name
(setq x (getpoint "\nPick axis crossing lines to extend: "))
(setq y (getpoint x "\nPick endpoint: ")) ;get axis crossing lines
 (setq sset1 (ssget "c" x y)) ;get entities to extend
 (setq count 0) ;set counter
 (if (/= sset1 nil) ;test for selection set
 (while (< count (sslength sset1)) ;while still select. set
 (setq elst (entget (ssname sset1 count)) ;get entity name
 pt1 (cdr (assoc 10 elst)) ;get one endpoint
 pt2 (cdr (assoc 11 elst)) ;get other endpoint
 int (inters x y pt1 pt2) ;find intersection
);end setq of axis and line
 (command "extend" obj "" int "") ;command to extend line
 (setq count (1+ count)) ;go to next line count
);end while
);end if
(setvar "cmdecho" 1) ;ADDED echo to prompt back on
);end defun

Figure 10.5: The Mlext.lsp file with the additions made.

Next, go back to the Chapt10 drawing and re-create the drawing in figure 10.3. Load and run the Mlext program as
you did previously. Notice that it runs much faster and that the extend command prompts no longer appear at the
command prompt. Setting Cmdecho to zero will improve the speed of any program that executes AutoCAD
commands recursively.

Improving Speed Through Direct Database Access
Another method for improving speed is to make your program modify the drawing database directly instead of going
through an AutoCAD command. Figure 10.6 shows a modified version of the Mlext program that does this.

The ABC’s of AutoLISP by George Omura

221

Copyright © 2001 George Omura,,World rights reserved

;Function to find closest of two points---------------------------------------
(defun far (fx fy dlxf / dst1 dst2 intx)
 (setq dst1 (distance dlxf fx)) ;find distnce to one pt
 (setq dst2 (distance dlxf fy)) ;find distnce to other pt
 ;If 1st pt.is farther than 2nd pt then eval 1st pt........
 (if (> dst1 dst2) fx fy)
)

;Proram to extend multiple lines -- Mlext2.lsp
;---
(defun c:MLEXT2 (/ sset1 count pt1 pt2 int OBJ objx objy
 elst int far1 sub1 sub2)
 (graphscr)
 ;Get entity list of line to be extended to then find endpoints..........
 (princ "\nSelect boundary edge...") ;print prompt
 (Setq obj (entget (car (entsel))) ;get boundary
 objx (cdr (assoc 10 obj)) ;get 1st endpoint
 objy (cdr (assoc 11 obj)) ;get 2nd endpoint
 sset1 (ssget) ;get lines to trim
 count 0
) ;set count to zero
 ;IF lines have been picked.........
 (if (/= sset1 nil)
 ;As long as count is less than number of objects in selection set...
 (while (< count (sslength sset1))
 ;Get intersect of two lines and find farthest endpt of line ...
 (setq elst (entget (ssname sset1 count)) ;get entity list
 pt1 (cdr (setq sub1 (assoc 10 elst))) ;get 1st endpoint
 pt2 (cdr (setq sub2 (assoc 11 elst))) ;get 2nd endpoint
 int (inters objx objy pt1 pt2 nil) ;find interects
 far1 (far pt1 pt2 int) ;find far point
)
 ;IF pt1 equals point farthest from intersect..........
 (if (= far1 pt1)
 (entmod (subst (cons 11 int) sub2 elst)) ;update pt2
 (entmod (subst (cons 10 int) sub1 elst)) ;else update pt1
);end IF 2
 (setq count (1+ count)) ;add one to count
);end WHILE
);end IF 1
);END of defun

Figure 10.6: The Mlext2 program that directly modifies the drawing database.

The ABC’s of AutoLISP by George Omura

222

Copyright © 2001 George Omura,,World rights reserved

In this section you'll enter the modified program, and then use the Chapter 10 drawing to see how the program
works.

1. Exit the Chapt10 drawing and open an AutoLISP file called Mlext2.lsp.

2. Copy the program in figure 10.6 into the file. Save and exit Mlext2.lsp.

3. Return to the Chapt10 drawing. Once again, reconstruct the drawing shown in figure 10.3.

4. Load and run Mlext2.lsp.

5. At the first prompt:

Select boundary edges...

Select object:

6. Pick the boundary edge line indicated in figure 10-3. At the next prompt:

Select objects:

enter a C to use a crossing window.

7. Pick the two points indicated in figure for the corners of the crossing window. The lines will extend to
the boundary edge line.

Notice that the extension operation occurred much faster than before. Since the program doesn't have to go through
an extra level of processing, namely the AutoCAD Extend command, the operation occurs much faster. Lets look at
how the program was changed to accomplish the speed gain.

You might first notice the function far added to the program file. We will look at this function a bit later. The
beginning of the program shows some immediate changes.

(defun c:MLEXT2 (/ sset1 count pt1 pt2 int OBJ objx objy

elst int far1 sub1 sub2)

(graphscr)

(princ "\nSelect boundary edge...")

(Setq obj (entget (car (entsel)))

(setq objx (cdr (assoc 10 obj)))

(setq objy (cdr (assoc 11 obj)))

Instead of simply obtaining the object name of the boundary edge line, we extract the endpoint coordinates of that
line and set the coordinates to the variables objx and objy. These endpoints are used later in conjunction with the

The ABC’s of AutoLISP by George Omura

223

Copyright © 2001 George Omura,,World rights reserved

inters function to find the exact point to which a line must be extended.

Next, we obtain a selection set of the lines to be changed using ssget without any arguments:

(setq sset1 (ssget))

Remember that when you use ssget in this way, the user is allowed to select the method of selection just as any
select object prompt would. The user can use a standard or crossing window, pick objects individually, or selective
remove or add objects to the selection set. In our exercise, you were asked to enter a C for a crossing window to
select the lines.

This is followed by an if conditional expression to test if objects have been selected.

(if (/= sset1 nil)

The following while expression then does the work of updating the drawing database for each line that was selected.
Just as with the Mlext program, the while expression checks to see if the value of count is less than the number of
objects in the selection set. It then finds the object list for one of the lines and derives the two endpoints of that line.

(while (< count (sslength sset1))

(setq elst (entget (ssname sset1 count)))

(setq pt1 (cdr (setq sub1 (assoc 10 elst))))

(setq pt2 (cdr (setq sub2 (assoc 11 elst))))

This part is no different from Mlext. But the next line is slightly different from its corresponding line in Mlext.

(setq int (inters objx objy pt1 pt2 nil))

Here, inters is used to find the intersection between the line currently being examined and the boundary edge line.
We see the two variables objx and objy used as the first two arguments to inters. These are the two endpoints of the
boundary edge line derived earlier in the program. The variables pt1 and pt2 are the endpoints of the line currently
being examined. A fifth argument, nil is added to the inters expression. When this fifth argument is present in an
inters expression and is nil, then inters will find the intersection of the two pairs of coordinates even if they don't
actually cross (see figure 10-7).

The ABC’s of AutoLISP by George Omura

224

Copyright © 2001 George Omura,,World rights reserved

Figure 10-7: How the Inters function works

Inters treats the two lines as if they extended infinitely in both directions in order to find a point common to both
lines. This feature is needed since the line being edited and the boundary edge line don't actually cross.

The next expression calls the user defined function far:

(setq far1 (far pt1 pt2 int))

This function finds which of two points is closest to a third point. The first two arguments to far are the points to be
compared against the third argument which is the reference point. Far then returns the point that is farthest from the
reference point. The result is that far finds the endpoint of the line that is the farthest from the intersection of the line
and the boundary edge line. We will look at how far works later. For now lets continue with the main program.

Once the program finds the farthest of the two endpoints, the next three lines actually make the changes to the
database.

The ABC’s of AutoLISP by George Omura

225

Copyright © 2001 George Omura,,World rights reserved

(if (= far1 pt1)

(entmod (subst (cons 11 int) sub2 elst)) (entmod (subst (cons 10 int) sub1 elst))

);end IF 2

The conditional if expression checks to see if the farthest endpoint of the current line is equal to pt1. This test is
done to determine which endpoint of the current object should be modified. We want the program to modify the
endpoint closest to the intersection of the line and the boundary edge line so this test finds which endpoint is the one
to change. If pt1 happens to be the equal to far1, therefore being farthest endpoint, then the sublist representing pt2
is modified. If pt1 proves not to be the farthest endpoint, then the sublist associated with it is modified.

Remember that subst replaces one list for another within an association list. Then endmod updates the drawing
database record to reflect the new property list that is passes to it as an argument. The net result is the extension of a
line to the boundary edge line.

The rest of the program adds one to the counter variable and the whole process is repeated until all the objects in the
selection set have been processed. Since this program circumvents the AutoCAD Extend command and directly
modifies the drawing database, it executes the changes to the lines objects much faster. However, to accomplish this
extra speed, you must do some additional programming.

Now, lets briefly look at the far function. It is a fairly simple function that first obtains the distance between a
reference point and two other points, then depending on which point yields the greater distance, the points value is
returned. The value of far's three arguments are passed to the variables fx fy and dsfx. Fx and fy are the points in
question and dsfx is the reference point:

(defun far (fx fy dlxf / dst1 dst2 intx)

The function then finds the distance between fx and dlfx and assigns the value to dst1:

(setq dst1 (distance dlxf fx))

The same procedure is applied to fy:

(setq dst2 (distance dlxf fy))

Finally, the conditional if expression tests to see which distance is greater and returns a point value depending on the
outcome:

(if (> dst1 dst2) fx fy)

The ABC’s of AutoLISP by George Omura

226

Copyright © 2001 George Omura,,World rights reserved

Filtering Objects for Specific Properties
There are a number of other functions available that allow you to manipulate selection sets Table lists them and
gives a brief description of what they do:

Function Description

(ssadd [ent. name][s. set]) Creates a selection set. If used with no arguments, a selection set is created
with no objects. If only an object name given as an argument, then a
selection set is created that contains that object. If an object name and a
selection set name is given, then the object is added to the selection set.

(ssdel [ent. name][s. set]) Deletes an object from a selection set. ssdel then returns the name of the
selection set. IF the object is not a member of the selection set, then ssdel
returns nil.

(sslength [s. set]) Returns the number of objects in a selection set.

(ssmemb [ent. name][s. set]) Checks to see if an object is a member of a selection set. If it is, then ssmemb
returns the name of the selection set. if not, then ssmemb returns nil.

(ssname [s. set][nth object]) Returns the object name of a single object in a selection set. The second
argument to ssname corresponds to the object's number within the selection
set. The object numbers begin with zero and go to one minus the total
number of objects in the selection set.

You have already seen two of these functions, sslength and ssname, used in previous examples. Lets see how we can
use ssadd to filter out object selections.

Filtering a Selection Set
Figure 10-8 shows a function that is intended to filter out objects in a selection set based on layers. This function is
useful where a group of objects are so close together that they are difficult to select, or in situations where several
objects of different layers lie on top of each other and you want to select just the object on a specific layer. It returns
a selection or object name depending on whether the filtered selection set contains only one item.

The ABC’s of AutoLISP by George Omura

227

Copyright © 2001 George Omura,,World rights reserved

;function to filter entities by layer -- Lfilter.lsp--------------------------
(defun LFILTER (/ lay sset count ent newent)
 (setq lay (cons 8 (strcase (getstring "\nEnter layer name: "))))
 (setq sset (ssget)) ;get entities
 (setq count 0) ;set counter to zero
 (while (< count (sslength sset)) ;while still select. set
 (setq lay2 (assoc 8 (entget(setq ent(ssname sset count))))) ;get layer
 (if (equal lay lay2) ;if layer matches entity
 (if (not newent) ;if new not select. set
 (setq newent (ssadd ent)) ;make new select. set
 (setq newent (ssadd ent newent)) ;else add to select. set
);end if
);end if
 (setq count (1+ count))
);end while
 (if (= 1 (sslength newent))(ssname newent 0) newent) ;return select. set or
);end defun entity name

Figure 10.8: The layer filtering program

Let's see first hand how this function works.

1. Open a file call Lfilter.lsp and copy the Lfilter program in figure 10.8. Save and exit the file.

2. Return to the AutoCAD Chapt10 drawing and erase any objects in the file.

3. Create the layers listed in table 10.1. Be sure to assign the line types indicated for each layer.

4. Draw the lines shown in figure 10.9. and assign each line to the layer shown directly to the right of each
line. Use the coordinate and spacing information indicated in the drawing to place the lines.

5. Load the Lfilter program, then issue the erase command.

6. At the Select object prompt, enter:

(lfilter)

You will get the prompt:

Enter layer name:

The ABC’s of AutoLISP by George Omura

228

Copyright © 2001 George Omura,,World rights reserved

8. Enter hidden. You will get the next prompt:

Select objects:

9. Enter C to use a crossing window and pick the points 2,1.25 for the lower left corner of the window and
coordinate 8,8.25 for the upper right. The lines that pass through the crossing window will ghost. Press
return after picking points. The lines will un-ghost then the prompt will return the number of objects found.
The objects in the selection you just made with the crossing window that are on the layer hidden will
ghost.

10. Press return. You have just erased only the items in your crossing window that were on the layer
hidden.

11. Enter the Oops command in preparation for the next section.

Layer Name Linetype

hidden hidden

center center

dashed dashed

Table 10.1: Linetypes for drawing in figure 10.8

Figure 10.9: Test drawing for Lfilter.lsp

The ABC’s of AutoLISP by George Omura

229

Copyright © 2001 George Omura,,World rights reserved

Now that you know what Lfilter does, let's look at how it works. First, it creates a dotted pair representing the layer
sublist in an object property list:

(defun LFILTER (/ lay sset count ent newent)

(setq lay (cons 8

(strcase (getstring "\nEnter layer name: "))))

 When you are prompted for a layer, the name you enter is first converted to all upper case using the Strcase
function. This is done because the value associated with the layer group code in a property list is always in upper
case.

In order to make a comparison of data, we must make sure that the values we use in the comparison are in the same
format. Since AutoLISP is case sensitive when it comes to string values, we must make sure that the value the user
enters matches the case of the layer name in the property list. The strcase function will convert a string to either all
upper case or lower case depending on whether a third argument is present and is not nil.

Next, the cons function creates a dotted pair using 8 as the first element. 8 is the group code for layer names. The
dotted pair looks like this:

(8 . "Hidden")

Finally, the newly created dotted pair is assigned to the variable lay which will later be used as a filtering value.

The next line obtains the selection set to be filtered:

 (setq sset (ssget))

 Here, ssget is used without any argument thus allowing the user to select objects using any of the usual AutoCAD
selection options. This selection set is then assigned to the variable sset.

Next we come to the while expression.

(setq count 0)

(while (< count (sslength sset))

(setq lay2 (assoc 8

(entget(setq ent(ssname sset count)))))

(if (equal lay lay2)

(if (not newent)

(setq newent (ssadd ent))

(setq newent (ssadd ent newent))

The ABC’s of AutoLISP by George Omura

230

Copyright © 2001 George Omura,,World rights reserved

);end if

);end if

(setq count (1+ count))

);end while

This while expression compares the 8 group code sublist of each object in the selection against the variable lay. If it
finds a match, the object is added to a new selection set newent. Let's look at this while expression in detail.

First, the counter is set to zero and the conditional test is set up:

(setq count 0)

(while (< count (sslength sset))

Then the 8 group code sublist from the first object in the selection set is extracted and assigned to the variable lay2:

(setq lay2 (assoc 8

(entget(setq ent(ssname sset count)))))

Next, the variables lay lay2 are compared:

(if (equal lay lay2)

If there is a match signifying that the object is on layer "HIDDEN", then the program checks to see if the selection
set newent exists:

(if (not newent)

(setq newent (ssadd ent))

(setq newent (ssadd ent newent))

If newent does not exist, then ssadd creates a new selection set containing the object whose layer group code sublist
matches (8 . "HIDDEN") then assigns that selection set to the variable newent. If newent does exist, ssadd adds the
object to the selection set newent and redefines newent. This last conditional if is required since ssadd must be given
different arguments depending on whether it is to create a new selection set or just add an object to an existing
selection set.

Finally, the counter in increased by one and the while conditional loop repeats itself:

);end if

);end if

(setq count (1+ count))

);end while

The ABC’s of AutoLISP by George Omura

231

Copyright © 2001 George Omura,,World rights reserved

Once the new selection set containing the filtered objects is complete, the last expression returns either the selection
set of objects, or if there is only one object in the selection set, the object name.

(if (= 1 (sslength newent))(ssname newent 0) newent)

);end defun

The function sslength is used with the = predicate to see if newent contains only one element. If it does, then ssname
is used to extract the object name of the element from the selection set newent. Otherwise, the entire selection set
newent is returned. This last step is added to allow the user to use lfilter where only one item is accepted for input
such as the offset or fillet commands.

In this sample program, layers are used to filter objects, but you can use any object property as a filter. You can filter
objects by linetype, color, or any property available from the property list. Consult the list of group codes in
Appendix C for a list of group codes and their associated properties.

Selecting Objects Based on Properties
Another method for filtering can be found built into the ssget function. Ssget allows you to select objects based on a
filter list. This filter list is an association list much like a property list. The Getlayer function shown in figure 10.10
simply selects the entire contents of a layer that the user specifies.

;function to select all entities on a layer-----------------------------------

(defun GETLAYER (/ lay)
 (setq lay (list (cons 8
 (strcase (getstring "\nEnter layer name: ")))))
 (ssget "X" lay)
)

Figure 10.10: The Getlayer function.

Let's see what it does:

1. Save and exit the chapt10 file.

2. Open a file called Getlayer.lsp and copy figure 10.10 into the file. Save and exit the file.

3. Return to the chapt10 drawing file then load Getlayer.lsp.

4. Issue the Erase command. At the Select object prompt, Enter:

The ABC’s of AutoLISP by George Omura

232

Copyright © 2001 George Omura,,World rights reserved

(getlayer)

5. At the prompt

Enter layer name:

Enter center. All the objects on layer Center will ghost.

6. Press return. All the objects on layer Center are erased.

Getlayer does its work by using the "X" argument to ssget. This argument allows ssget to create a selection set based
on an association list of properties. In the case of Getlayer, the list is one element long.

First, Getlayer prompts the user for a layer:

(defun GETLAYER (/ lay)

(setq lay (list (cons 8

(strcase (getstring "\nEnter layer name: ")))))

The layer name is used to construct an object property dotted pair much like the one in the flayer function. This
dotted pair is further included in a list using the list function. The result is a list containing a single dotted pair:

((8 . "CENTER"))

This list is assigned to the variable lay which is in turn applied to ssget to create the selection set:

(ssget "X" lay)

)

Here we see the "X" argument used with ssget to tell ssget that a filter list is to be used to create the selection set.
Ssget then searches the drawing database to find all the objects that have properties that matches the filter list.

Getlayer could have been simplified to one expression thereby eliminating the need for the lay variable:

(ssget "X" (list (cons 8

(strcase (getstring "\nEnter layer name: ")))))

We include the lay variable to help explain how this function works.

A filter list can have more than one property sublist element much like an objects property list. But ssget will only
accept certain group codes in the filter list. Table shows those group codes and their associated properties:

The ABC’s of AutoLISP by George Omura

233

Copyright © 2001 George Omura,,World rights reserved

Group code Meaning

0 Object type

2 Block name

6 Linetype name

7 Text style name

8 Layer name

38 Elevation

39 Thickness

62 Color number; 0=byblock, 256=bylayer

66 Attributes-follow flag for blocks

210 3D extrusion direction vector

Accessing AutoCAD's System Tables
The tblnext and tblsearch functions are provided to help you gather information about layers, linetypes, views, text
styles, blocks, UCSs and viewports. Each one of these AutoCAD tools is represented in a table that contains the
tools status. Tblnext and tblsearch return this table information in the form of association lists similar to object
property lists. But unlike object property lists, you cannot modify lists returned from Tblnext and tblsearch.
However, you can modify the settings associated with a tblnext or tblsearch listing using the standard AutoCAD
commands.

To use tblnext, enter the following at the command prompt:

(tblnext "layer")
You will get an association list similar to the following:

((0 . "LAYER") (2 . "0") (70 . 0)(62 . 7) (6 . "CONTINUOUS"))

The individual dotted pairs can be extracted from this list using Assoc just as with any other association list or
property list. Enter the tblnext expression above again and you will get an association list of the next layer. Each
time tblnext is used, it advances to the next table setting until it reaches the last item in the particular table you are
searching. Once it reaches the end, tblnext returns nil. To reset tblnext to read from the beginning of the table again,
you include a second argument that evaluates to non-nil as in the following:

The ABC’s of AutoLISP by George Omura

234

Copyright © 2001 George Omura,,World rights reserved

(tblnext "layer" T)

If this expression is entered, you will get the same list as the one you got the first time you used tblnext. We used T
as the second argument but it could be any expression that evaluates to non-nil. Once you get a list, you can
manipulate in the same way as any other association list.

Tblsearch works slightly differently. Instead of stepping through each table item, tblsearch will go to a specific table
item which you name. Enter the following:

(tblsearch "layer" "hidden")

You will get the association list pertaining to the layer "hidden".

((0 . "LAYER") (2 . "HIDDEN") (70 . 0)(62 . 7) (6 . "HIDDEN"))

If you include a non-nil third argument to tblsearch, then the next time tblnext is used, it will start from the next item
after the one obtained from tblsearch.

Though we used layer settings as an example for tblnext and tblsearch, any of the table settings mentioned at the
beginning of this section can be used.

Figure 10.11 shows a program that uses tblnext to store layer settings in an external file. This program can be useful
if you use a single multi-layered drawing for several types of output. For example, an architect might have a drawing
that serves as both an electrical layout plan and a mechanical floor plan with different layers turned on or off
depending on which type of plan you want to edit or print. You can store your different layer settings for the
electrical and mechanical plans then restore one or the other group of settings depending on which plan you indent
to work on.

The ABC’s of AutoLISP by George Omura

235

Copyright © 2001 George Omura,,World rights reserved

;Program to save layer settings in a file -- Lrecord.lsp
;---
(defun c:lrecord (/ fname lafile record)
 (setq fname (getstring "\nEnter name of layer file: "));get name of file
 (setq lafile(open fname "w")) ;open file, file desc.
 (setq record (tblnext "layer" T)) ;get first layer set.
 (while record ;while record not nil
 (prin1 record lafile) ;print record to file
 (princ "\n" lafile) ;print to next line
 (setq record (tblnext "layer")) ;get next layer
);end while
 (close lafile) ;close layer file
);end defun

;Program to restore layer settings saved by lrecord
;---
(defun c:lrestore (/ clayer fname lafile flayer lname oldcset)
 (setvar "cmdecho" 0) ;turn off prompt echo
 (setvar "regenmode" 0) ;turn off autoregen
 (Setq clayer (getvar "clayer")) ;find current layer
 (setq fname (getstring "\nEnter name of layer file: ")) ;get layer file name
 (setq lafile(open fname "r")) ;open layer file
 (setq flayer (read (read-line lafile))) ;read first line
 (while flayer ;while lines to read
 (setq lname (cdr (assoc 2 flayer))) ;get layer name
 (setq oldcset (assoc 62 flayer)) ;get color setting
 (if (and (< (cdr oldcset) 0) (equal lname clayer)) ;if col. is off/currnt
 (command "layer" "C" (cdr oldcset) lname "Y" "") ;insert "Y" response
 (command "layer" "C" (cdr oldcset) lname "") ;else normal
);end if
 (Setq oldcset (assoc 70 flayer)) ;find if frozen
 (if (= (cdr oldcset) 65) ;if frozen then...
 (if (equal lname clayer) ;if current layer
 (command"layer" "freeze" lname "y" "") ;insert "y" response
 (command"layer" "freeze" lname "") ;else normal
);end if
 (command "layer" "thaw" lname "") ;else thaw layer

);end if
 (setq flayer (read-line lafile)) ;read next in file
 (if flayer (setq flayer (read flayer))) ;strip quotes
);end while
 (close lafile) ;close file
 (setvar "regenmode" 1) ;reset autoregen on

);end defun

Figure 10.11: A program to store layer settings

The ABC’s of AutoLISP by George Omura

236

Copyright © 2001 George Omura,,World rights reserved

The Lrecord program show at the top of the figure 10.11 simply creates a file then copies each layer association list
into the file. Lrecord uses the prin1 function to perform the copying because prin1 does not affect the list in any
way. If princ were used, the strings data types within the list would be striped of their quotation marks. Also, Write-
line is not used since it expects a string argument. Both princ and prin1 will write any data type to a file.

The Lrestore program simply reads each line back from a file created by Lrecord. Since the Read-line function
returns a string, the read function is used to strip the outermost level of quotation marks from the string to return the
association list.

(setq flayer (read (read-line lafile)))

The Layer data is then extracted from this list and applied to the layer command which sets the layer back to the
saved settings. The if conditional test is used to see if the layer to be restored is the current layer. A different
command expression is evaluated depending on whether the layer in question is current or not. This is done since the
layer command will issue an extra prompt if the current layer is to be turned off or frozen.

(if (and (< (cdr oldcset) 0) (equal lname clayer))

(command "layer" "C" (cdr oldcset) lname "Y" "")

(command "layer" "C" (cdr oldcset) lname "")

)

Conclusion
You have seen a variety of ways to select, edit, and manipulate AutoCAD objects. Selection sets and object filters
can provide a powerful means to automating AutoCAD. Tasks that would normally take several minutes to perform
manually can be reduced to a few seconds with the proper application of selection sets and recursive expressions.

You have also seen how changes in the way you write your program can affect your programs speed. Though the
speed of your programs may not be an issue to you now, as your experience with AutoLISP expands, your need for
speed will also expand.

In the next chapter, we will continue the discussion of object access by looking at how polylines and attributes can
be edited with AutoLISP.

The ABC’s of AutoLISP by George Omura

237

Copyright © 2001 George Omura,,World rights reserved

Chapter 11: Accessing Complex Objects
Introduction

Accessing polyline vertices

Defining a new polyline

Drawing the new polyline

Testing for polyline types

How arcs are described in polylines

Accessing object handles and block attributes

Extracting attribute data

Conclusion

Introduction
In this the final chapter, you will look at several programs that not only introduce you to some new AutoLISP
functions, but also review many of the functions you learned about from earlier chapters. In the process, you will
learn how to access complex object types. You will also look at ways to store data as a permanent record within a
drawing.

Accessing Polyline Vertices
Polylines are complex objects that are a composite of many objects. There are a variety of polylines from straight
lines, to three dimensional Bezier-spline polylines. But even the most complex polyline can be broken into three
basic components, Vertices, lines and arcs. AutoCAD stores polylines as a kind of compound object made up of
several layers of information. To help you get a grasp of this idea, you can think this storage structure as an onion;
as you peal off one layer, another layer is revealed. The first layer, the one accessed by entget, gives general
information about the polyline. In this section, you will look at ways to access deeper layers of information using
AutoLISP.

The ABC’s of AutoLISP by George Omura

238

Copyright © 2001 George Omura,,World rights reserved

It will help our investigation if we first take a look at typical polyline property list first hand.

Figure 11.1: Test drawing for exercise

Open a drawing file called Chapt11 and draw the polyline rectangle shown in figure 11.1. Use the coordinates
shown in the figure to locate the corners.

1. Enter the following expression at the command prompt:

(entget (car (entsel)))

2. The selection cursor box appears and you get the select object prompt. Pick the polyline you just drew.
The following listing appears.

((-1 . <Object name: 60000120>)

(0 . "POLYLINE")

(8 . "TEXT")

(66 . 1) (10 0.0 0.0 0.0)

The ABC’s of AutoLISP by George Omura

239

Copyright © 2001 George Omura,,World rights reserved

(70 . 1) (40 . 0)

(41 . 0)

(210 0.0 0.0 1.0)

(71 . 0)

(72 . 0)

(73 . 0)

(74 . 0)

(75 . 0))

We have list the polyline property list vertically for clarity though you will see the list shown as a continuous string
on your text screen. We see the object name, object type and layer listed but where the point group code 10 should
indicate some coordinate location, only zeros are shown. Also, we would expect to see a list of at least four
coordinate values. Instead, we see some somewhat unfamiliar codes from the 40 and 70 group codes, all showing
zeros.

This doesn't mean that we are unable to access more specific information about polylines. We just need to dig a little
deeper. The tool we use for digging is the entnext function.

We mentioned that it helps to think of the polyline data as being stored in layers like those of a onion. The listing
above represents the outermost layer. To get to the next layer, you need to use the entnext function.

1. Enter the next expression:

(entget (entnext (car (entsel))))

2. You will get a listing like the following:

((-1 . <Object name: 60000120>)

(0 . "VERTEX")

(8 . "0")

(10 1.0 1.0 0.0)

(40 . 0)

(41 . 0)

(42 . 0)

The ABC’s of AutoLISP by George Omura

240

Copyright © 2001 George Omura,,World rights reserved

(70 . 0)

(50 . 0))

This new property list gives us some new information. The object name is different from the previous list. Also,
instead of showing "POLYLINE" as an object type, we get "VERTEX". The layer information is nearly the same
but for the first point value, group code 10, we see the coordinate for the first corner of the box, 1.0 1.0 0.0. For
purposes of our discussion, we'll call this vertex object a polyline sub-object or just sub-object.

Now, we know how to get more detailed information about a polyline by introducing entnext into our expression to
extract an object's sub-object information. We have "peeled off" the first layer of our onion to reveal the next layer
of information. But we only got the first vertex of the polyline. To get the others, you just continue adding more
entnext functions.

1. Enter the following:

(entget (entnext (entnext (car (entsel)))))
2. When the Select object prompt appears, pick the polyline box. Another new property list appears.

((-1 . <Object name: 60000120>)

(0 . "VERTEX")

(8 . "0")

(10 10.0 1.0 0.0)

(40 . 0)

(41 . 0)

(42 . 0)

(70 . 4)

(50 . 0))

Now we see a list that describes the second vertex of the polyline. Note the group code 10 value shows a coordinate
10.0 1.0 0.0 which is the next vertex in the polyline.

It would be rather awkward to have to keep expanding our expression by adding more entnext functions to extract
each sub-object's property lists. If we have a polyline that has 40 vertices or more, we would end up with a
enormous program in order to extract all the vertices. Fortunately, we can use a recursive function to get the
property list of each vertex. By using the same variable name to which we assign each vertex object name, we
eliminate the need to add continual nests of the entnext function. Figure 11.2 shows a diagram of how this recursive
function works and figure 11.3: shows a function that uses this recursion to extract a list of polyline vectors. The
Function at the top of the figure, Getvec, is the one we will look at first.

The ABC’s of AutoLISP by George Omura

241

Copyright © 2001 George Omura,,World rights reserved

Figure 11.2: Using recursion to extract subobject information

The ABC’s of AutoLISP by George Omura

242

Copyright © 2001 George Omura,,World rights reserved

;Function to create list of polyline vertices----------------------------------

(defun getver (EntNme / SubEnt VerLst vertex)
 (setq SubEnt (entnext EntNme)) ;get first vertex
 (setq VerLst '()) ;setup vertex list
 (while SubEnt
 (setq vertex (cdr (assoc 10 (entget SubEnt)))) ;get first vertex point
 (setq VerLst (append VerLst (list vertex))) ;add vertex to verlst
 (setq SubEnt (entnext SubEnt)) ;go to next vertex
)
 VerLst ;return vertex list
)

;Function to check if point lies between endpoints of line---------------------
 (defun btwn (a b c)
(setq ang1 (angle a b)) ;find vertex to point ang.
(setq ang2 (angle a c)) ;find vertex to vertex ang.
(if (EQUAL (RTOS ang1 2 2) (RTOS ang2 2 2)) b) ;if equal return point.
)

;Program to insert Vertex in simple polyline
;--
(defun C:ADDVERT (/ pEnt VerLst Newpt int NewVer ptyp)
 (setq pEnt (entsel "Pick vertex location: ")) ;Get new vertex and pline
 (setq VerLst (getver (car pEnt))) ;extract vertices
 (setq ptyp (assoc 70 (entget (car pEnt))))
 (setq Newpt (osnap (cadr pEnt) "nearest")) ;Get new vertex location
 (while (cadr VerLst)
 (setq NewVer ;add vertex to new NewVer
 (append NewVer (list (car VerLst)))
)
 (setq int ;Check for between-ness
 (btwn (car VerLst) newpt (Cadr VerLst))
)
 (if int ;if between, add to NewVer
 (setq NewVer (append NewVer (list int)))
)
 (setq VerLst (cdr VerLst)) ;Remove vertx. from list
);end while
 (setq NewVer (append NewVer (list (car VerLst)))) ;add last vertx. to NewVer
 (command "erase" (car pEnt) "") ;erase old pline
 (command "pline") ;start pline command
 (foreach n NewVer (command n)) ;insert points from NewVer
 (if (= (cdr ptyp) 1)
 (command "close")
 (command "")
) ;end pline command
)

Figure 11.3: Function that implements diagram in figure 11.2

The ABC’s of AutoLISP by George Omura

243

Copyright © 2001 George Omura,,World rights reserved

Lets examine this function in detail.

The function takes an object name as an argument. Presumably the object in question is a polyline. It proceeds to
obtain the first vertex object name from that object.

(defun getvec (EntNme / SubEnt VecLst vector)

(setq SubEnt (entnext EntNme))

This vertex object name is assigned to the symbol subEnt. Next, a list is created to hold the vector coordinates:

(setq VecLst '())

The following while expression then goes to each vector property list and extracts the coordinate value. It first
extract the coordinate from the current vertex object:

(while SubEnt

(setq vector (cdr (assoc 10 (entget SubEnt))))

Next, it appends that coordinate value to the vertex list VecLst.

(setq VecLst (append VecLst (list vector)))

finally, the variable SubEnt is assigned the vertex object name of the next vertex and the process is repeated:

(setq SubEnt (entnext SubEnt))

)

When all the vertices have been obtained, the list of vertices is returned:

VecLst

)

Now that we know what entnext is capable of, lets look at a practical application. Figure 11.3 includes a program
called Addvect that adds a vertex to a polyline. If you have ever had to add a vertex to a polyline using the
AutoCAD pedit command, you know it can be a trying effort. This program simplifies the operation to one step.
Figure 11.4 gives a graphic description of how this program works.

The ABC’s of AutoLISP by George Omura

244

Copyright © 2001 George Omura,,World rights reserved

Figure 11.4: How Addvect work conceptually

Lets see first hand how it works.

1. Save and exit the Chapt11 file.

2. Open an AutoLISP file called Addvert.lsp then copy figure 11.3 into the file. Save and exit Addvert.lsp

3. Return to the Chapt11 drawing file and load addvert.lsp.

4. Enter Addvert at the command prompt. At the prompt:

The ABC’s of AutoLISP by George Omura

245

Copyright © 2001 George Omura,,World rights reserved

Pick vertex location:

Pick the square polyline at the coordinate 10,6. The box disappears and a new box is drawn with an
additional vertex at the point you picked.

This program reduces into one step a process than normally takes seven steps through the Pedit command. Lets see
how it works in detail.

First, an object and a point are gotten using the entsel function:

(defun C:ADDVECT (/ pEnt VecLst Newpt int NewVec type)

(setq pEnt (entsel "Pick vector location: "))

As you may recall, entsel pauses the program's processing and prompts the user to select an object. Once a user
responds, a list of two elements is returned with the object name and the coordinate used to pick the object.

The next line uses a user defined function, getvec, to create a new list containing only the vertex coordinates from
the polyline object picked. This list of vertices is assigned to the variable VecLst.

(setq VecLst (getvec (car pEnt)))

We saw earlier how getvec works. It returns a list of polyline vertices. In the above expression, the list of vertices is
assigned to the VecLst variable.

The next line obtains the associated value of the 70 group code from the polyline. The 70 group code identifies the
type of polyline it is, whether it is closed, curve-fit, spline curved, etc. See Appendix for a full list of the 70 group
code options.

(setq ptyp (assoc 70 (entget (car pEnt))))

this information will be used at the end of the program to determine how the polyline is redrawn.

The next line used the osnap function to establish a point exactly on the polyline.

(setq Newpt (osnap (cadr pEnt) "nearest"))

Here, the coordinate from the entsel function used earlier is applied to the osnap "nearest" function to obtain a new
point. This new point is exactly on the polyline.

Defining a New Polyline
The while expression that follows builds a new list of vertices from which a new polyline will be drawn. This list is
actually a copy of the list created by our user defined function Getvec with the new point added in the appropriate
place.

The test expression in the while expression tests to see if the end of the list VecLst has been reached:

The ABC’s of AutoLISP by George Omura

246

Copyright © 2001 George Omura,,World rights reserved

(while (cadr VecLst)

Next, the first element of Veclst is added to a list called NewVec:

(setq NewVec

(append NewVec (list (car VecLst)))

)

This expression is basically just copies the first element of the original vertex list to a new list NewVec.

The next set of expressions tests to see if our new vertex newpt lies between the first two point of the vertex list:

(setq int

(btwn (car VecLst) newpt (Cadr VecLst))

)

Another user-defined function is used to actually perform the test. This function is called btwn and it tests to see if
one coordinate lies between two others. If Btwn does find that Newpt lies between the first and second point of
VecLst, then Btwn returns the value of Newpt. Otherwise Btwn returns nil.

If the btwn test function returns a coordinate, the next expression adds the new vertex to the NewVec list.

(if int

(setq NewVec (append NewVec (list int)))

)

Finally, the first element of the vertex list is removed and the whole process is repeated.

(setq VecLst (cdr VecLst))

);end while

Once the while loop is done, VecLst is a list of one element. That last element is added to the NewVec list:

(setq NewVec (append NewVec (list (car VecLst))))

Drawing the new Polyline
The last several lines erase the old polyline and redraw it using the new vertex list. First the old line is erased:

(command "erase" (car pEnt) "")

The ABC’s of AutoLISP by George Omura

247

Copyright © 2001 George Omura,,World rights reserved

Then the pline command is issued:

(command "pline")

Next, the foreach function is used to input the vertices from the NewVec list to the Pline command:

(foreach n NewVec (command n))

You may recall that foreach is a function that reads each element from a list and applies that element to a variable.
That variable is then used in an expression. The expression is evaluated until all the elements of the list have been
evaluated in the expression. In this case, each vertex from the NewVec list is applied to a command function which
supplies the vertex coordinate to the pline command issued in the previous expression.

Once foreach has completed evaluating every element of the NewVec list, the last expression ends the Pline
command:

(if (= (cdr Ptyp) 1)

(command "close")

(command "")

)

)

The if conditional expression tests to see if the polyline is closed or not. If it is, then it enter the word "close" to
close the polyline. If not, then an enter is issued. You may recall that in the first part of the program, the 70 group
code sublist was extracted from the polyline property list. This sublist was assigned to the variable ptyp. Here, ptyp
is tested to see if its code value is 1. If it is 1, this means that the polyline is closed thereby causing the if expression
to evaluate the (command "close") expression. If this expression is left off, the new polyline box would have only
three sides.

Testing for Polyline Types
In the last expression above, you got a glimpse of a special concern when dealing with polylines. There are really
several types of polylines which must all be handled differently. The Addvect program will only function properly
when used on simple polylines made up of line segments. Polylines that are curve-fitted or splined will contain extra
vertices that are not actually part of the drawn polyline. these extra vertices are used as control points in defining
curves and splines.

Fortunately, the 70 group codes enable you to determine what type of vertex you are dealing with. In the program
above, we used the 70 group code only to determine whether the polyline is closed or not but other conditions can be
tested for. You could include a test for a spline vertex by comparing the 70 group code value of a vertex to the value
16. If it is 16, the value for a spline frame control point, then you know not to include the vertex in your vertex list.
We won't try to give you examples here as we our space is limited. However, you may want to refer to Appendix for
more details on the group codes.

The ABC’s of AutoLISP by George Omura

248

Copyright © 2001 George Omura,,World rights reserved

How Arcs are Described in Polylines
Arcs in polylines are described using a bulge factor and two vertices. You can think of the bulge factor as the
tangent of the angle described by chord of the arc and a line drawn from one end of the arc to the arc's midpoint (see
figure 11.5).

Figure 11.5: The arc bulge factor

From this relationship, the following formula is derived:

bulge = h / 0.5 cord = 2h/cord

We can derive the geometry of the arc from these simple relationships. Figure 11.6 shows how we can derive the
arcs angle from the bulge factor. We don't give an example of a program to edit arcs in a polyline. Such a task could
take a chapter in itself since it can be quite involved. Also, you may not find a need for such a capability at this
point. However, should you find a need, we have given you the basics to build your own program to accomplish the
task.

The ABC’s of AutoLISP by George Omura

249

Copyright © 2001 George Omura,,World rights reserved

Figure 11.6: Finding the angle of an arc

Accessing Object Handles and Block Attributes
In the last section, you saw how to extract information from a complex object. You can use the same method to
extract information from block attributes. The program you are about to examine uses block attributes as well as
object handles and external files to help assign and store names to objects in your drawing. We will look at how
entnext can be used to get attribute information from a block and how you can use attributes to permanently store
information. You will also explore one possible way of using object handles which are permanent names AutoCAD
can give to objects in a drawing.

Using Object Handles
We know that every object is given an object name. This name is the key to accessing the object's record in the
drawing database. Unfortunately, this object name changes from editing session to editing session. This means that
during one editing session, an object will have the object name <Object name: 600000d4> while in another session
the same object will have the name <Object name: 60000012>. For the most part, this may not be of concern to you.
But if you want to have a way of permanently identifying objects from one editing session to another, you may find
this fact disturbing.

Fortunately, starting with release 10, you can add what is called an object handle to each and every object in your
AutoCAD drawing. Handles are added to the object's in a drawing by AutoCAD whenever you turn on the handles
function using the handles command. You do not have control over the naming of Objects, AutoCAD automatically
assigns an alpha-numeric name to every object in the drawing.

The handent function in conjunction with other functions can be used to obtain an objects handle from the drawing

The ABC’s of AutoLISP by George Omura

250

Copyright © 2001 George Omura,,World rights reserved

database. The handles are added to an object's property list as a group code 5 property sublist. To get an object's
handle, you use the usual assoc-entget function combination to extract the sublist.

1. Return to the Chapt11 drawing and enter the following at the command prompt:

handles

2. At the prompt:

Handles are disables.

ON/DESTROY:

enter ON. Next enter

(assoc 5(entget(car (entsel))))

3. At the select object prompt, pick the polyline box. You will get a list similar to the following:

(5 . "29")

The second element of the group 5 property is the object handle. Note that the handle is a numeric value in quotes,
so it is really a string data type even though it is a number.

Using handles, you could write a simple routine to display an object's handle which you could record somewhere.
Then, you could have another program to retrieve an object based on this handle. We've taken this idea a step further
and have written a program that allows you to assign any name you like to an object and later select that object by
entering the name you have assigned to it. Figure 11.7 shows this program and Figure 11.8 shows a diagram of how
it works.

The ABC’s of AutoLISP by George Omura

251

Copyright © 2001 George Omura,,World rights reserved

;Function to turn a list into a string--

(defun ltos (lst / gfile strname)
(setq gfile (open "acad.grp" "w")) ;open a file on disk
(prin1 lst gfile) ;print list to file
(close gfile) ;close file
(setq gfile (open "acad.grp" "r")) ;open file
(setq strname (read-line gfile)) ;read list from file
(close gfile) ;close file
strname ;return converted list
)

;Function to obtain name list stored in attribute-----------------------------
 (defun getatt (/ nament)
(setq nament (ssname(ssget "X" '((2 . "NAMESTOR")))0)) ;get attribute block
(read (cdr (assoc 1(entget (entnext nament))))) ;get attribute value
)

;Function to clear stored names---
(defun attclr ()
(setq nament (ssname (ssget "X" '((2 . "NAMESTOR")))0)) ;get attrib. block
(setq namevl (entget (entnext nament))) ;get attrib. ent. list
(setq namelt (assoc 1 namevl)) ;get attrib. value
(entmod (subst (cons 1 "()") namelt namevl)) ;add list to attrib
)

;Program to assign a name to an entity
;---
(defun C:NAMER (/ group gname ename sname namevl namelt)
(setq ename (cdr (assoc 5 (entget (car (entsel "\nPick object: "))))))
(setq gname (list (strcase (getstring "\nEnter name of object: "))))
(setq group (getatt)) ;get names from attrib.
(setq gname (append gname (list ename))) ;new name + ent. name
(setq group (append group (list gname))) ;add names to list
(setq sname (ltos group)) ;convert list to strng
(setq namevl (entget (entnext (ssname (ssget "X" '((2 . "NAMESTOR")))0))))
(setq namelt (assoc 1 namevl)) ;get attrib. value
(entmod (subst (cons 1 sname) namelt namevl)) ;add list to attrib
(entupd (cdr (assoc -1 namevl)))
(princ)
)

;Function to select an entity by its name-------------------------------------
 (defun GETNAME (/ group gname)
(setq gname (strcase (getstring "\nEnter name of entity: ")))
(setq group (getatt)) ;get names from attrib.
(handent (cadr (assoc gname group)))
)

Figure 11.7: Program to give names to objects

The ABC’s of AutoLISP by George Omura

252

Copyright © 2001 George Omura,,World rights reserved

Figure 11.8: Diagram of a program to name objects

This program makes use of a block attribute as a storage medium for the names you assign to objects. Lets take a
closer look.

First, you need to define the attribute used for storage.

1. Exit the Chapt11 file and open an AutoLISP file called Namer.lsp. Copy the program shown in figure
11.7 into your file then save and exit the file.

The ABC’s of AutoLISP by George Omura

253

Copyright © 2001 George Omura,,World rights reserved

2. Return to the Chapt11 file then load Namer.lsp.

3. Enter attdef to start the attribute definition command.

4. Enter the following responses to the attdef prompts:

Attribute modes -- Invisible:N Constant:N Verify:N Preset:N

Enter (ICVP) to change, RETURN when done:~CR

Attribute tag: name

Attribute name: name

Default attribute value: ()

Start point or Align/Center/Fit/Middle/Right/Style: 2,9

Height (2.0): ~CR

Rotation angle <0>: ~CR

5. The word name will appear in at coordinate 2,9. Now issue the block command and enter the following
responses to the block prompts:

Block name (or ?): namestor

Insert base point: 2,9

select objects: [pick attribute defined in previous step.]

6. Issue the insert command and enter the following responses to the insert prompts:

Block name (or ?): namestor

Insertion point: 2,9

X scale factor <1> / Corner / XYZ: ~CR

Y scale factor (default=X): ~CR

Rotation angle <0>: ~CR

Enter attribute values

name <()>: ~CR

You have just defined the attribute within which the program namer will store your object names. Now you are
ready to use the program.

The ABC’s of AutoLISP by George Omura

254

Copyright © 2001 George Omura,,World rights reserved

1. Enter namer at the command prompt. At the prompt:

Pick object:

pick the polyline box.

2. At the next prompt

Enter name of object:

Enter square. The computer will pause for a moment then the command prompt will return. Also, the value
of the attribute you inserted earlier will change to a list containing the name SQUARE and the object
handle associated with the name. The Namer program uses the attribute as a storage device to store the
name you give the object with its handle.

3. To see that the name square remain associated with the box, exit the chapt11 file using the end command
then open the file again.

4. Load the Namer.lsp file again.

5. Now issue the copy command. At the Select object prompt, enter

(getname)

You will get the prompt

Enter name of object:

Enter square. The box will highlight indicating that it has been selected.

6. At the Base point prompt, pick a point at coordinate 2,2.

7. At the Second point prompt, pick a point at coordinate 3,3.

The box is copied at the displacement 1,1.

The attribute used to store the name could have been made invisible so it doesn't intrude on the drawing. We
intentionally left it visible so you could actively see what is going on.

Namer works by first extracting the object handle of the object selected then creating an association list of the
handle and the name entered by the user. This association list is permanently stored as the value of an attribute. The
attribute value is altered using the entmod function you saw used in the last chapter. Let's take a detailed look at how
namer and getname work.

Using Object Handles
Namer starts by obtaining the object handle of the object the user picks:

(defun C:NAMER (/ group gname ename

The ABC’s of AutoLISP by George Omura

255

Copyright © 2001 George Omura,,World rights reserved

sname nament namevl namelt)

(setq ename

(cdr (assoc 5 (entget (car (entsel "\nPick object: ")))))

)

Here, entsel is used to get the object name of a single object. The car function extracts the name from the value
returned from entsel then entget get the actual object name. At the next level, the assoc function is used to extract the
5 group code sublist from the object. The actual object handle is extracted from the group code using the cdr
function. This value is assigned to the variable ename.

In the next expression, a list is created containing the name given to the object by the user:

(setq gname

(list (strcase (getstring "\nEnter name of object: ")))

)

The user is prompted to enter a name. this name is converted to all upper case letters using the strcase function. Then
it is converted into a list using the list function. finally, the list is assigned to the variable gname.

The next expression calls a user defined function called getatt:

(setq group (getatt))

This function extracts the attribute value from a the block named namestor. You may recall that the default attribute
value of namestor was "()". Getatt extracts this value and the above expression assigns the value to the variable
group. We'll look at how getatt works a little later.

Next, the object handle is appended to the list containing the name the user entered as the name for the object. This
appended list is then appended to the list named group which was obtained from the attribute.

(setq gname (append gname (list ename)))

(setq group (append group (list gname)))

The variable group is the association list to which user defined object name are stored. It is the same list you see in
the block attribute you inserted earlier.

The next line converts the list group into a string data type using a user defined function called ltos:

(setq sname (ltos group))

Ltos simply write the list represented by the symbol group to an external file then reads it back. The net affect is the
conversion of a list into a string. This is done so the value of group can be used to replace the current value of the
attribute in the namestor block. This is a situation where data type consideration is important.

The ABC’s of AutoLISP by George Omura

256

Copyright © 2001 George Omura,,World rights reserved

Attribute values cannot be anything other than strings so if our program were to try to substitute a list in place of a
string, an error would occur.

Extracting Attribute Data
The next several lines obtain the property list of the namestor block attribute and its attribute value in preparation
for entmod:

(setq namevl (entget

(entnext (ssname (ssget "X" '((2 . "NAMESTOR")))0)))

)

Here, the ssget "X" filter is used to select a specific object, namely the block named "NAMESTOR". In this
situation, since the name of the block is a fixed value, we include the name as a permanent of the expression:

(ssget "X" '((2 . "NAMESTORE")))

This helps us keep track of what block we are using and also reduces the number of variables we need to use.

Once the block is found by ssget, ssname gets the blocks' object name and entnext extracts the attributes' object
name. Entget extracts the attributes property list which is assigned to the namevl variable. The line that follows uses
the assoc function to extract the actual attribute value.

(setq namelt (assoc 1 namevl))

Figure 11.9 shows how this works.

Figure 11.9: Extracting an attribute value

The ABC’s of AutoLISP by George Omura

257

Copyright © 2001 George Omura,,World rights reserved

Just as we used entnext to extract the vertices of a polyline, you can use entnext to obtain the attribute information
from a block. If there is more than one attribute in a block, you step through the attributes the same way you step
through the vertices of a polyline. The Getatt function works in a similar way to these expressions you have just
examined.

Finally, entmod is used to update the attribute to store the association list of the object name and object handle:

(entmod (subst (cons 1 sname) namelt namevl))

(entupd (cdr (assoc -1 namevl)))

(princ)

)

The subst function is used to substitute the newly appended name with the old attribute value in the attributes
property list. Then entmod updates the drawing database with the updated property list. The entupd function is used
to update the display of the attribute in the block. Entupd is only needed where attributes and curve-fitted polylines
are being edited and you don't want to regenerate the entire drawing to update the display. You could think of it as a
regen for specific objects.

The getname function is actually quite simple compared with namer.

(defun GETNAME (/ group gname getname handl nament newent)

(setq gname (strcase (getstring "\nEnter name of object: ")))

(setq group (getatt))

(handent (cadr (assoc gname group)))

)

Getname prompts the user for the name of the object to be selected. It then obtains the association list of name from
the storing attribute using the user defined Getatt function. Finally, getname extracts the object handle from the
association list using the name entered by the use as the key-value. The handent function returns the object name of
the object whose handle it receives as an argument.

Namer and getname are fairly crude program as they have very little in the way of error checking. For example, if
while using the getname function, you enter a name that does not exit, you get an AutoLISP error message. Also, if
you attempt to save more than dozen names, you will get the out of string space error message. This is due to the
100 character limit AutoLISP places on string data types. There is also no facility to check for duplicate user
supplied names. We wanted to keep the program simple so you won't get too confused by extra code. You may want
to try adding some error checking features yourself, or if you feel confident, you can try to find a way to overcome
the 100 character limit.

The ABC’s of AutoLISP by George Omura

258

Copyright © 2001 George Omura,,World rights reserved

Conclusion
Programming can be the most frustration experience you have ever encountered as well as an enormous time waster.
But it is also one of the most rewarding experiences using a computer can offer. And once you master AutoLISP,
you will actually begin to save time in your daily use of AutoCAD. But to get to that point, you must practice and
become as familiar as possible with AutoLISP. The more familiar you are with it, the easier it will be to use and the
quicker you will be able to write programs.

We hope this tutorial has been of value to your programming efforts and it will continue to be helpful to you as a
reference when you are stuck with a problem. Though we didn't cover every AutoLISP function in detail, In
particular, we did not cover binary operations and a few other math functions. We did cover the major functions and
you were able to see how those functions are used within programs solving real world problems. You were
introduced to the program in a natural progression from entering your first expression through the keyboard to
designing and debugging programs and finally to accessing the AutoCAD drawing database.

The ABC’s of AutoLISP by George Omura

259

Copyright © 2001 George Omura,,World rights reserved

Appendix A: Menu Primer
You can find comprehensive information on AutoCAD Menus in the AutoCAD help system.
Here are instructions for finding the section devoted to Menus.

1. In AutoCAD, choose Help > Developer Help from the menubar

2. Click on the Contents tab in the Help Topics dialog box, then expand the Customization Guide listing

3. Expand the Custom Menus listing. You will see the list of topics. Click on the topic of your choice.

You can also refer to Chapter 29 of Mastering AutoCAD for tutorials on menu customization.

The ABC’s of AutoLISP by George Omura

260

Copyright © 2001 George Omura,,World rights reserved

 Appendix B: Error Messages
Error codes have been completely retooled in AutoCAD 2002. AutoCAD 2002 now offers
Visual LISP which is a programming environment designed for AutoLISP. There, you'll find
an environment that helps you find errors quickly, You can open Visual LISP by choosing
Tools > AutoLISP > Visual LISP Editor. The Visual LISP Editor offers many of the tools you
expect to find in a modern programming environment.

A discussion of Visual LISP is not currently available in this document. You can find a
tutorial and reference guide built into Visual LISP by choosing Help > Developer List. Click
on the Contents tab to see a listing of topics including Visual LISP Developer’s Guide and
Visual LISP Tutorial.

Visual LISP is an advanced tool that expects the user to have a working knowledge of
AutoLISP. You may want to work with the ABC's of AutoLISP until you feel comfortable with
AutoLISP.

The ABC’s of AutoLISP by George Omura

261

Copyright © 2001 George Omura,,World rights reserved

Appendix C: Group Codes
You can find a comprehensive listing of group codes in the AutoCAD help system. Here are
instructions for finding the group codes.

1. In AutoCAD, choose Help > Developer Help from the menubar

2. Click on the Contents tab of the Help Topics dialog box, then expand the DXF Reference listing

You can then expand the other options under DXF Reference for group codes pertaining to the selected
topic.

The ABC’s of AutoLISP by George Omura

262

Copyright © 2001 George Omura,,World rights reserved

Appendix D: System and Dimension
Variables
You can find a comprehensive listing of dimension variables in the AutoCAD help system.
Here are instructions for finding the dimension variables information.

1. In AutoCAD, choose Help > Help from the menubar

2. Click on the Contents tab in the Help dialog box then expand the Command Reference listing

3. Expand the System Variables listing

You will see a listing of system variables with a brief description to the right. You can click on the system
variable name to get a more detailed description.

The ABC’s of AutoLISP by George Omura

263

Copyright © 2001 George Omura,,World rights reserved

	The ABC's of AutoLISP
	Introduction
	 Who should read this book
	 How This Book Is Organized
	 How to Use This Book
	 Where to Find the LISP Programs
	CHAPTER 1: Introducing AutoLISP
	 Understanding the Interpreter and Evaluation
	 The Components of an Expression
	 Using Arguments and Expressions
	 Using Variables
	 Understanding Data Types
	 Integers and Real Numbers
	 Strings
	 Lists
	 File Descriptors
	 Object Names
	 Selection Sets
	 Symbols
	 Subrs
	 Atoms
	 Assigning Values to Variables with Setq
	 Preventing Evaluation of Arguments
	 Applying Variables
	 Assessing Single Elements of a List
	 Functions for Assigning Values to Variables
	 Adding Prompts
	CHAPTER 2: Storing and Running Programs
	 Creating an AutoLISP Program
	 What you Need
	 Creating an AutoLISP File
	 Loading an AutoLISP file
	 Running a Loaded Program
	 Understanding How a Program Works
	 Using AutoCAD Commands in AutoLISP
	 How to Create a Program
	 Local and Global Variables
	 Automatic Loading of Programs
	 Managing Large Acad.lsp files
	 Using AutoLISP in a Menu
	 Using Script Files
	CHAPTER 3: Organizing a Program
	 Looking at a Programs Design
	 Outlining Your Programming Project
	 Using Functions
	 Adding a Function
	 Reusing Functions
	 Creating an 3D Box program
	 Creating a 3D Wedge Program
	 Making Your Code More Readable
	 Using Prettyprint
	 Using Comments
	 Using Capitals and Lower Case Letters
	 Dynamic Scoping
	CHAPTER 4: Interacting with the Drawing Editor
	 Prompting the User for Distance
	 A Sample Program Using Getdist
	 How to Get Angle Values
	 Using Getangle and Getorient
	 How to Get Text Input
	 Using Getstring
	 Using Getkword
	 How to Get Numeric Values
	 Using Getreal and Getint
	 How to Control User Input
	 Using Initget
	 Prompting for Dissimilar Variable Types
	 Using Multiple Keywords
	 How to Select Groups of Objects
	 Using Ssget
	 A Sample Program Using Ssget
	CHAPTER 5: Making Decisions with AutoLISP
	 Making Decisions
	 How to Test for Conditions
	 Using the If function
	 How to Make Several Expressions Act like One
	 How to Test Multiple Conditions
	 Using the Cond function
	 How to Repeat parts of a Program
	 Using the While Function
	 Using the Repeat Function
	 Using Test Expressions
	CHAPTER 6: Working With Geometry
	 How to find Angles and Distances
	 Understanding the Angle, Distance, and Polar Functions
	 Using Trigonometry to Solve a Problem
	 Gathering Information
	 Finding Points Using Trigonometry
	 Functions Useful in Geometric Transformations
	 Trans
	 Atan
	 Inters
	 Sin
	 Cos
	CHAPTER 7: Working with Text
	 Working With String Data Types
	 Searching for Strings
	 How to Convert Numbers to Strings and Back
	 Converting a Number to a String
	 How to read ASCII text files
	 Using a File Import Program
	 Writing ASCII Files to Disk
	 Using a Text Export Program
	CHAPTER 8: Interacting with AutoLISP
	 Reading and Writing to the Screen
	 Reading the Cursor Dynamically
	 Writing Text to the Status and Menu Areas
	 Calling Menus from AutoLISP
	 Drawing Temporary Images on the Drawing Area
	 Using Defaults in a Program
	 Adding Default Responses to your Program
	 Dealing with Aborted Functions
	 Using the *error* Function
	 Organizing Code to Reduce Errors
	 Debugging Programs
	 Common Programming Errors
	 Using Variables as Debugging Tools
	CHAPTER 9: Using Lists to store data
	 Getting Data from a List
	 Using Simple Lists for Data Storage
	 Evaluating Data from an Entire List at Once
	 Using Complex Lists to Store Data
	 Using Lists for Comparisons
	 Locating Elements in a List
	 Searching Through Lists
	 Finding the Properties of AutoCAD Objects
	 Using Selection Sets and Object Names
	 Understanding the structure of Property Lists
	 Changing the properties of AutoCAD objects
	 Getting an Object Name and Coordinate Together
	CHAPTER 10: Editing AutoCAD objects
	 Editing Multiple objects
	 Improving Processing Speed
	 Using Cmdecho to Speed up Your Program
	 Improving Speed Through Direct Database Access
	 Filtering Objects for Specific Properties
	 Filtering a Selection Set
	 Selecting Objects Based on Properties
	 Accessing AutoCAD's System Tables
	CHAPTER 11: Accessing Complex Objects
	 Accessing Polyline Vertices
	 Defining a New Polyline
	 Drawing the new Polyline
	 Testing for Polyline Types
	 How Arcs are Described in Polylines
	 Accessing Object Handles and Block Attributes
	 Using Object Handles
	 Using Object Handles
	 Extracting Attribute Data
	Appendix A: Menu Primer
	Appendix B: Error Messages
	Appendix C: Group Codes
	Appendix D: System and Dimension Variables

