The ABC’s of AutoL ISP by George Omura

“THE ABC’S OF
AUTOLISP

George Omura

Introduction

One of AutoCAD's greatest assetsis its adaptability. Y ou can control just about every aspect of
AutoCAD's operations from the appearance of its drawing editor to its variety of menus. A key
element of this adaptability isits built-in programming language, AutoL1SP. With AutoLISP,
you can virtually write your own commands or redefine others.

Y ou can think of AutoL ISP as a very sophisticated macro-building facility. (Simple macros are
like scripts that automate repetitive keystrokes.) Y ou don't need to be a programmer to use
AutoLISP. In fact, AutoL ISP is designed so that everyday users of AutoCAD can start to use it
after aminimum of training. This book makes AutoL | SP accessible to AutoCAD users who are
looking for away to enhance and extend their use of AutoCAD.

1

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Who should read this book

This book introduces nonprogrammers to the use of AutoLISP. If you are an intermediate |level
AutoCAD user, interested in learning about this powerful tool, then thisis the book for you. If
you are just beginning to learn AutoCAD, then you should probably become a bit more familiar
with AutoCAD before attempting to learn AutoLISP. This book assumes that you have at |east
an intermediate level of expertise with AutoCAD and are acquainted with simple Windows
operations.

H ow This Book |'s Organized

The book is divided into 11 chapters. The first three chapters give you an introduction to
programming in AutoLISP. The Chapter 1 introduces you to AutoL ISP by showing you how to
useit directly from the AutoCAD command prompt. The Chapter 2 shows you how to create and
save programsin afile. Chapter 3 discusses ways of organizing your programming projects and
how to manage your computers memory.

The next four chapters show you how to use AutoL ISP to do avariety of editing tasks. Chapter 4
discusses the functions that allow you to ask the user for input. Chapter 5 explains how to build
decision-making capabilities into your programs. Chapter 6 shows you how to deal with
geometric problems using AutoCAD. Chapter 7 discusses the manipulation of text.

Thelast four chapters show you how AutoCAD and AutoL ISP interact. In Chapter 8, you will
see how you can control many facets of AutoCAD through AutoL1SP. Chapter 9 delvesinto
lists, afundamental component of all AutoL1SP programs. Chapter 10 shows you ways of
modifying AutoCAD objects by directly accessing the AutoCAD drawing database. And finally,
Chapter 11 looks at ways to dig deeper into the drawing database to get information on complex
drawing objects like polylines and block attributes.

In addition, five appendices are included as reference material to the book. In the original version
of this book, these appendices contained the resources indicated by their title. In this electronic
version, these appendices offer directions on how to find information in the AutoCAD help
system. The first three show you how to find information on the AutoCAD menu structure,
AutoL ISP error messages, and AutoCAD group codes. The fourth appendix describes how to
find informaton on the standard AutoCAD dimension variables and system variables. The fifth
appendix describes how to find informaton on the Table group codes.

2

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

How to Use This Book

Each chapter offers exercises and sample programs that demonstrate some general concept
regarding AutoLISP. Through these exercises, the book shows you how programs develop from
ideas into finished, running programs. Also, the information you learn in one chapter will build
on what you learned in the previous chapter. This way, your knowledge of AutoL ISP will be
integrated and cohesive, rather than fragmented. For this reason, the best way to use this book is
to read each chapter in order and do al of the exercises. Since the topics are oriented toward
accomplishing tasks rather than ssmply focusing on individual functions, you will have a good
grasp of how to use AutoL ISP in real world situations by the end of this book.

Where to Find the L1SP Programs

Asyou read the chapters and do the exercise, you will be asked to enter program code into afile.
If you arein ahurry, you can cut and paste the code directly from the chapter you are reading.
Thiswill save agood deal of time, but make sure you study the code that you cut and paste.

This book was originally published in 1990 by Sybex Inc. It has been reproduced herein an electronic format by
the Author for the benefit of Mastering AutoCAD readers everywhere. Enjoy....

Copyright © 2001 George Omura,,World rights reserved. No part of this publication may
be stored in aretieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without the prior agreement
and written permission of the author.

3

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

4

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 1: Introducing AutoLISP

Featuring

Understanding the AutoL ISP Interpreter and Evaluation

Expressions and Arguments

Variables and Data Types

Manipulating Lists with Functions

Get Functions

If you have never programmed a computer before, you may think that learning AutoL ISP will be difficult. Actually,
when you use a program such as AutoCAD, you are, in a sense, programming your computer to create and
manipulate a database. As you become more familiar with AutoCAD, you may begin to explore the creation of
linetypes and hatch patterns, for example. Or you may customize your menu to include your own specialized
functions and macros. (Macros are like scripts that the computer follows to perform a predetermined sequence of
commands.) At thislevel, you are delving deeper into the workings of AutoCAD and at the same time programming
your computer in amore traditional sense.

Using AutoL ISP isreally just extending your knowledge and use of AutoCAD. In fact, once you learn the basic
syntax of AutoL1SP, you need only to familiarize yourself with AutoL1SP's built-in functions to start writing useful
programs. (AutoL I SP's syntax is the standard order of elementsin its expressions.) Y ou might look at AutoL1SP
functions as an extension to AutoCAD's library of commands. The more functions you are familiar with, the better
equipped you are for using the program effectively.

AutoL ISP closely resembles Common LISP, the most recent version of the oldest artificial intelligence
programming language still in use today. AutoLISP is essentially a pared down version of Common LISP with some
additional features unique to AutoCAD. Many consider LI1SP to be one of the easiest programming languages to
learn, partly because of its simple syntax. Since AutoL ISP is a subset of common LISP, it isthat much easier to
learn.

In this chapter, you will become familiar with some of the basic elements of AutoL1SP by using AutoL ISP directly
from the AutoCAD command prompt to perform afew simple operations. While doing this, you will be introduced
to some of the concepts you will need to know to develop your own AutoL | SP applications.

Understanding the | nterpreter and Evaluation

AutoL ISP is accessed through the AutoL ISP interpreter. When you enter data at the AutoCAD command prompt,
the interpreter first readsit to determine if the datais an AutoL1SP formula. If the data turns out to be intended for
AutoL ISP, then AutoL ISP evaluates it, and returns an answer to the screen. This process of reading the command
prompt, eval uating the data, then printing to the screen, occurs whenever anything is entered at the command prompt

5

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

and is an important part of how AutoL1SP functions.

In some ways, the interpreter is like a hand-held calculator. Just as with a calculator, the information you wish to
have AutoL | SP evaluate must follow a certain order. For example, the formula 0.618 plus 1 must be entered as
follows:

(+0.618 1)

Try entering the above formula at the command prompt. AutoL|SP eval uates the formula (+ 0.618 1) and returns the
answer, 1.618, displaying it on the prompt line.

This structure-+ 0.618 1-enclosed by parentheses, is called an expression and it is the basic structure for all

AutoL ISP programs. Everything intended for the AutoL ISP interpreter, from the simplest expression to the most
complex program, must be written with this structure. The result returned from evaluating an expression is called the
value of the expression.

The Components of an Expression

An AutoL ISP expression must include an operator of some sort followed by the items to be operated on. An
operator isan instruction to take some specific action such as adding two numbers together or dividing one number
by another. Examples of mathematical operators include the plus sign (+)for addition and forward slash (/) for
division.

We will often refer to the operator as afunction and the items to be operated on as the arguments to the function or
simply, the arguments. So, in the expression (+ 0.618 1), the + is the function and the 0.618 and 1 are the arguments.
All AutoL I SP expressions, no matter what size, follow this structure and are enclosed by parentheses.

Parentheses are important elements of an expression. All parentheses must also be balanced, that is, for each left
parenthesis, there must be aright parenthesis. If you enter an unbalanced expression into the AutoL ISP interpreter,
you get the following prompt:

(>

where the number of parenthesesto the left is the number of parentheses required to complete the expression. If you
see this prompt, you must enter the number of closing parentheses indicated in order to return to the command
prompt. In this example, you would need to enter two right parentheses to complete the expression.

Doubl e quotation marks enclosing text must also be carefully balanced. If an AutoL1SP expression is unbalanced, it

can be quite difficult to complete it and exit AutoLISP. Figure 1.1 shows the components of the expression you just
entered.

6

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Function

Arguments
"

(+ 0618

Balanced Parenthesis

Figurel.1l: The parts of and AutoL|SP expression

Note that spaces are used to separate the functions and arguments of the expression. Spaces are not required between
the parentheses and the elements of the expression though you can add spaces to help improve the readability of
expressions when they become complex. However, it is very important to maintain spaces between the elements of
the expression. Spaces help both you and AutoL ISP keep track of where one element ends and another begins.

Using Arguments and Expressions

AutoL | SP evaluates everything, not just expressions, but the argumentsin expressions as well. This meansthat in
the above example, AutoL|1SP eval uates the numbers 0.618 and 1 before it applies these numbers to the plus
operator. In AutoL1SP, numbers evaluate to themselves. This means that when AutoL | SP eval uates the number
0.618, 0.618 is returned unchanged. Since AutoL1SP evaluates all arguments, expressions can also be used as
arguments to a function.

For example, enter the following at the command prompt:
(/1(+0.6181))

In this example, the divide function (/) is given two arguments-number 1 and an expression (+ 0.618 1). This type of
expression is called a complex or nested expression because one expression is contained within another. So in our
example, AutoLISP first evaluates the arguments of the expression, which are the expression (+ 0.618 1) and the
number 1. It then applies the resulting value of the expression and the number 1 to the divide function and returns
the answer of 0.618047 (seefigure 1.2).

7

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Function
Arguments
-~
| |
(/ 1(+ 0618 1))
L ' ¥ ' Arguments are evaluated
(/1 1.618)
| ‘ | Then applied to the function
0.618047

Figure 1.2: Evaluation of a nested expression

Using Variables

Another calculator-like capability of the interpreter isits ability to remember values. Y ou probably have a calculator
that has some memory. This capability allows you to store the value of an equation for future use. In asimilar way,
you can store values using variables.

A variableislike a container that holds a value. That value can change in the course of a program's operation. A

simple analogy to thisisthe title of a government position. The position of president could be thought of asa
variable. This variable can be assigned a value, such as Ronald Reagan or Bill Clinton.

Understanding Data Types

Variables can take on several types of values or data types. Here is what some of these data types|ook like in
AutoLISP.

8

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

DATA TYPE EXAMPLE

Integer 24

Real Number 0.618

String 720 Feet 6 Inches'

List (4.5021 6.3011 0.0)

File Descriptor <File: 620>

Object Name <Object name: 60000014c>
Selection Set <Selection set: 1>

Symbols Pointl

Subrs Setq

By separating data into types, the interpreter is better able to determine precisely how to evaluate the data and keep
programs running quickly. Also, a computer stores different types of data differently, and so data types help
AutoL | SP to manage its memory more efficiently. Finally, data types help keep your programming efforts clear by
forcing you to think of data as having certain characteristics. The following descriptions give you an idea of what
each of these data types are.

Integers and Real Numbers

Integers are whole numbers from -32768 to + 32767. The value of an expression containing only integersis always
an integer. For example, the value of the expression
(/ 252) is12. The decimal valueis dropped from the resulting value.

Real numbers are numbers that include a decimal value. If the same expression above is written using real numbers,
(/ 25.0 2.0), its value will be expressed asthe real number 12.5. Integers have a black and white quality about them.
24 will always equal 24. Real numbers (sometimes referred to asreals), on the other hand can be a bit less definite.
For example, two real values, 24.001245781 and 24.001245782 are nearly identical but are not equal. If you were to
drop the last decimal place in both these numbers, then they would be equal values. This definitive quality of
integers makes them more suited to certain types of uses, like counting, while real numbers are better suited to
situations that require exacting val ues such as coordinate values and angles. Also, computations performed on
integers are faster than those performed on reals.

Y ou may have noticed that in our previous examples, the real number 0.618 is preceded by a zero and not written as
.618. In AutoL ISP, real numbers with val ues between 1.0 and 0.0 must begin with zero. If you do not follow this
rule, you will get an error message. Enter the following at the command prompt:

(+.6181)

9

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Though the above expression looks perfectly normal, the following error message appears:

error: invalid dotted pair

Most beginners and even some experienced AutoL | SP users might be completely baffled by the error message. We
will ook at what dotted pairs are later in this book but for now, just keep in mind that real values between 1.0 and
0.0 must be entered with a 0 preceding the decimal point.

Strings

The term string refers to text. Strings are often used as prompts in AutoL | SP expressions but they can also be
manipulated using AutoL I SP. For example, using the Strcat AutoL ISP function, you could combine two strings,
"thirty seven feet" and "six inches’, into one string "thirty seven feet six inches'. Try entering this:

(strcat "thirty seven feet " " six inches")
Thefollowingisreturned:

"thirty seven feet six inches’

Lists

Lists are data elements enclosed in parentheses. They are the basic data structure in AutoLISP. A list can be made up
of any number of integers, real numbers, strings, and even other lists.

There are two types of lists. Those intended for evaluation and those intended as repositories for data. When alist
contains afunction asits first element, we can generally assume that it is an expression intended for evaluation.
Such alist is often referred to as aform. An example of alist as arepository of datais alist that represents a
coordinate location. For example, the list

(1.22.34.4)

contains three elements, an X, Y, and Z coordinate. The first element, 1.2, isthe x coordinate, the second element,
2.3 isthey coordinate, and the third element, 4.4, isthe z coordinate.

File Descriptors

AutoL ISP alows you to read and write text filesto disk. File descriptors are used in a program to access files that
have been opened for processing. Y ou might think of afile descriptor as a variable representing the file in question.
We will discuss this data type in more detail in Chapter 7.

Object Names

Every object in an AutoCAD drawing has a name. The name is an alphanumeric code unique to that object. This
name can be accessed by AutoL ISP and used as a means of selecting individual objects for processing. Object
names are provided by AutoCAD and are not user definable. Also Object names can change from one drawing
session to another.

10

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Selection Sets

Just as you can define a group of objects for processing using the AutoCAD Select command, you can also assigh a
group of objects, or a selection set, to avariable in AutoL1SP for processing. Selection sets are given names by
AutoCAD.

Symbols

AutoL | SP treats everything as data to be evaluated. Therefore, symbols, or names given to variables, are also data
types. Symbols are usually text, but they can also contain numbers like Point1 or dx2. A symbol must, however,
start with a letter.

Subrs

Subrs are the built-in functions offered by AutoL I SP. These functions perform tasks ranging from standard math
operations such as addition and subtraction, to other more complex operations such as obtaining information from
the drawing database about a specific object.

Atoms

There areredlly two classes of data, lists and atoms. Y ou have already seen an example of alist. An atomisan
element that cannot be taken apart into other elements. For example, a coordinate list can be "disassembled" into
three numbers, the x value, the y value, and the z value, but the x, y and z values cannot be taken apart any further.
In acoordinate list, the x, y, and z values are atoms. Symbols are also atoms because they are treated as single
objects. So, in general, atoms are either numbers or symbols.

Assigning Values to Variables with Setq

Variables are assigned val ues through the use of the Setq function. As you have seen, afunction can be asimple
math operator such as plus or divide. A function can also consist of a set of complex instructionsto perform more
than one activity, like asmall program.

The Setq function tells AutoL | SP to assign avalue to avariable. For example, Try the following exercise to assign
the value 1.618 to the variable named Golden:

1. Enter the following at the command prompt:
(setq golden 1.618)

Y ou can now obtain the value of avariable by preceding the variable name by an exclamation point. Now
check the value of Golden.

2. Enter
Igolden
11

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The value 1.618 isreturned. Y ou might think of the exclamation point as another way of saying "Display
the contents of ."

Setq will assign avalue to avariable even if the variable already has a value assigned to it. See what
happens when Golden is assigned a new value.

3. Enter the following:
(setq golden 0.618)

Golden isreassigned the value 0.618 and the old value, 1.618, is discarded. Y ou can even reassign avalueto a
variable by using that variable as part of the new value asin the following expression

(setq golden (+ golden 1))

In this example, Golden is assigned a new value by adding 1 to its current value.

Preventing Evaluation of Arguments

But something doesn't seem quite right in the above example. Earlier, we said that AutoL | SP evaluates the
Argumentsin an expression before it applies the arguments to the function. In the above example, we might expect
AutoL ISP to evaluate the variable Golden before it is applied to the Setq function. Since Golden is a variable whose
value is 0.618, it would evaluate to 0.618. AutoL1SP should then try to set 1.618 equal to 0.618, whichis
impossible. The value returned by the argument (+ golden 1) cannot be assigned to another number (see Figure 1.3).

(setq golden {(+ golden 1))
l I iy I ¢ | Arguments are evaluated

(setq 0.618 1.618)
| | Then applied to the
& function Setq

We would expect an error

Figure 1.3: The expected outcome of setq

12

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Here's why the above example works. Setq function is a special function that is a combination of two other
functions, Set and Quote (hence the name Setq). As with Setq, the function Set assigns the value of the second
argument to the value of the first argument. The Quote function provides a means of preventing the evaluation of an
argument. So, both Setq and Set Quote prevent the evaluation of the first argument, which in the above exampleis
the variable Golden.

Y ou could write the above example as
(set quote golden (+ golden 1))

and get the same answer. Or you could abbreviate the Quote function to an apostrophe, asin the following:
(set 'golden (+ golden 1))

and get the same answer. Figure 1.4 shows what happens when you use Set Quote. Any of these three forms work,
but since Setq is the most concise, it isthe preferred form.

Set ' (set quote) is equivelant to Setq.

(setq golden (+ golden 1))

I |1 | Arguments are evaluated except
l & ¢ for Golden which is quoted...
(setq 0.618 1.618)
l | Then they are applied to the Set
% function.

Golden is set=1.618

Figure 1.4: The Quote function prevents evaluation of an argument

To further illustrate the use of Quote, look at the following expression:
(setvar " snapunit” (12 12))

The function in this expression is Setvar. Setvar performs the same function as the AutoCAD setvar command-it
changes the settings for system variables. Setvar accepts as its arguments a string val ue giving the name of the

13

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

setting to change ("snapunit") and a value representing the new settings (12 12). Here we are attempting to use
Setvar to change the snap distance setting to 12 by 12.

Remember that AutoL ISP evaluates each argument before it is passed to the function. As with numbers, Strings
evaluate to themselves, so the string "snapunit" evaluates to "snapunit”. But AutoL1SP will also try to evaluate the
list (12 12). AutoL ISP alwaystriesto evaluate lists as if they are expressions. Asyou saw earlier, the first element in
an expression must be afunction. Since the first element of thelist (12 12) is not afunction, AutoL1SP will return an
error message (see figure 1.5).

(setvar "snapunit" (1212))

| || |
L * * Arguments are evaluated

(setvar "snapunit" (1212))
| |

‘ Then applied to
error: bad function the SETVAR function

Figure 1.5;: An error using Setvar

In this situation, we do not want thislist (12 12) to be evaluated. We want it to be read "asis'. To do this, we must
add the Quote function as in the following:

(setvar " snapunit” ‘(12 12))

Now AutoL ISP will not try to evaluate (12 12), and Setvar will apply the list to the snapunit system variable setting.
Quote provides a means to prevent evaluations when they are not desirable. Quote is most often used in situations
where alist must be used as an argument to a function. Remember that there are two types of lists, those intended
for evaluation and those used to store data. The list (12, 12) stores data, the width and height of the Snap distance.
Because (12 12) does not have afunction asitsfirst element, it cannot be evaluated. Since AutoL ISP blindly
evaluates everything, Quote is needed to tell AutoLISP not to evaluate (12 12).

Applying Variables

The variable Golden can now be used within an AutoCAD command to enter a value at a prompt, or within another
function to obtain other results. To see how this works, you'll assign the value 25.4 to a variable called Mill.

1. Enter

(setq mill 25.4)

14

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

at the command prompt.
Now find the result of dividing Mill by Golden.

2. Enter

(/ mill golden)

This returns the value 15.698393.
Now assign this value to yet another variable.

3. Enter

(setq B (/ mill golden))

Now you have three variables, Golden, Mill, and B, which are all assigned values that you can later retrieve, either
within an AutoCAD command by entering an exclamation point followed by the variable, or as an argument within
an expression.

Our examples so far have shown numbers being manipulated, but text can also be manipulated in asimilar way.
Variables can be assigned text strings that can later be used to enter values in commands that require text input.
Strings can also be joined together or concatenated to form new strings. Strings and numeric val ues cannot be
evaluated together, however. This may seem like a simple statement but if you do not consider it carefully, it can
lead to confusion. For example, it is possible to assign the number 1 to avariable as atext string by entering

(setq text1"1")
Later, if you try to add this string variable to an integer or real number, AutoCAD will return an error message.
The examples used Setq and the addition and division functions. These are three functions out of many available to

you. All the usual math functions are available, plus many other functions used to test and manipulate variables.
Table 1.1 shows some of the math functions available.

15

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Table 1.1: A partial list of AutoLISP functions

MATH FUNCTIONS THAT ACCEPT MULTIPLE ARGUMENTS

(+ number number ...) add

(- number number ...) subtract
(* number number ...) multiply
(/ number number ...) divide

(max number number ...) find largest of numbers given
(min number number ...) find smallest of numbers given

(rem number number ...) find the remainder of numbers

MATH FUNCTIONS THAT ACCEPT SINGLE ARGUMENTS
(1+ number) add 1

(1& COPY; number) subtract 1

(abs number) find the absolute value

(exp nth) e raised to the nth power

(expt number nth) number raised to the nth power
(fix real) convert real to integer

(float integer) convert integer to real

(gcd integer integer) find greatest common denominator
(log number) find natural log of number

(sgrt number) find sguare root of number

16

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

FUNCTIONS FOR BINARY OPERATIONS
(~ integer) find logical bitwise NOT of integer

(logand int. int. ...) find logical bitwise AND of

integers
(logiorint. int. ...) find logical bitwise OR of integers
(Ishint. bits) find logical bitwise shift of int.by bits

Since AutoL ISP will perform mathematical calculations, you can use it as a calculator while you are drawing. For
example, if you need to convert a distance of 132 feet 6 inches to inches, you could enter

(setginchl (+ 6 (* 132 12)))

at the command prompt. The result of this expression is returned as 1590. The asterisk is the symbol for the
multiplication function. The value 1590 is assigned to the variable Inchl, which can later be used as input to
prompts that accept numeric values. Thisisavery simple but useful application of AutoLISP. In the next section,
you will explore some of its more complex uses.

Accessing Single Elements of a List

When you draw, you are actually specifying points on the drawing area in coordinates. Because a coordinate is a
group of values rather than asingle value, it must be handled as alist in AutoLISP. Y ou must use special functions
to access single elements of alist. Two of these functions are Car and Cadr. The following example illustrates their
use.

Suppose you want to store two point locations as variables called Pt1 and Pt2.
1. Enter the following two lines the command Prompt:

(setq ptl (list 5 6))
(setq pt2 (list 10 12))

The List function in these expressions combines the argumentsto form alist. (You can seethisin Figure
1.6).

17

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(setq pt1 (list5 6))

| |
l ¢ ¢ The argument (list 5 6) is
(setq pt1 (5 6)) evaluated to form the list (5 6)
|

:

pt1 is set = the list (5 6)

Figure 1.6: Thelist function.

These lists are assigned to the variable Pt1 and Pt2. Aswe have just seen, variables accept not only single
objects astheir value but also lists. In fact, variables can accept any data type as their value, even other symbols
representing other variables and expressions.

2. To seethe new value for ptl, enter the following:

Iptl

Thelist (5 6) appears.

Now suppose you want to get only the x coordinate value from this example.

3. Enter:

(car ptl1)

The value 5 appears.

18

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

4. To get they value, enter:
(cadr ptl)
which returns the value 6. These values can in turn be assigned to variables, asin the line

(setq x (car ptl))

Figure 1.7 may help you visualize what Car and Cadr are doing.

car pt1
(P) The argument pt1

¢ T evaluates to (5 6)

(car (5 B))
‘ Then Car retums the
first element of (5 6)
5
(cadr pt1)

The argument pt1

¢ T evaluates to (5 6)

(cadr (5 6))

‘ Then Cadr retumns the
second element of (5 6)
B

Figure 1.7: Car and Cadr of pt1

By using the List function, you can construct a point variable using x and y components of other point
variables. For example, you may want to combine the y value of the variable Pt1 with the x value of a point

variable Pt2.

5. Enter the following:

19

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(list (car pt2) (cadr ptl))

Y ou get thelist (10 6) (seefigure 1.8).

(list (car pt2) (cadr pt1)) Symbols pt1 and

pt2 evaluate to
& ¢ T ¢ T their lists (10 12)
. and (5 6)
(list (car (10 12)) (cadr (5 6))) Then Car returns

the first element of
(10 12) and Cadr

(list 10 6) returns the second

| | element of (5 6).
Finally, List
combines the

(106) results from Car

and Cadr into the
list (10 6).

Figure 1.8: Deriving a new list from pt1 and pt2

These lists can be used to enter values during any AutoCAD command that prompts for points.

Actually, we have mided you sightly. The two primary functions for accessing elements of alist are CAR and
CDR (pronounced could-er). Y ou know that Car extracts the first element of alist. CDR, on the other hand,

returns the value of alist with itsfirst e ement removed.

6. Enter the following at the command prompt:

(cdr '(ABQ))

Thelist (B C) isreturned (seefigure 1.9).

20

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(cdr '(A B C)) The function Cdrreturns a copy of

the quoted list (A B C) with the
; first element, A, removed.
(B C)

Figure 1.9: Using Cdr to remove the first element of a list.
When CDR is applied to the list (A B C) you get (B C) which isthe equal to thelist (A B C) with the first
element, A, removed. Notice that in the above example, thelist (A B C) was quoted. If the quote were left out,

AutoL ISP would try to evaluate (A B C). Remember that AutoL ISP expect the first element of alist to bea
function. Since A is variable and not a function, you would get the error message:

error: null function
(ABC)

Now try using CDR with the variable pt1.

7. Enter
(cdr ptl)

Thelist (6) is returned.

Remember that anything within a pair of parenthesesis considered alist, even () is considered alist of zero
elements. Since the value returned by CDR isalist, it cannot be used where a number is expected. Try replacing
the CADR in the earlier example with a CDR:

8. Enter:

(list (car pt2) (cdr ptl))
(10 (6))

You get alist of 2 elements, 10 and (6) (see figure 1.10). Though thisis a perfectly legal ligt, it cannot be used

21

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

as acoordinate list.

list t2 dr pt1
(IS (car P) (C rp)) Symbols pt1 and pt2 evaluate to

¢ ¢ T ¢ T their lists (10 12) and (5 6)

(list (car (10 12)) (cdr (5 6)))

Then Car returns the first element
of (10 12) and Cdr returns a copy
(list 10 (6)) ofthe list (5 6) with the first
| | element removed.
% Finally, List combines the results
(10 (6)) from Car and Cdr into the list (10
(6)).

Figure 1.10: Using Car and Cdr together

So what exactly is CADR then. CADR is the contraction of CAR and CDR. Y ou now know that CDR returns alist
with its first element removed and that CAR returns the first element of alist. So to get 6 from the list held by the
variable pt1, you apply CDR to pt1 to get (6) the apply car to (6) asin the following example:

(car (cdr ptl))
6

This CAR-CDR combination is abbreviated to CADR.

(cadr (ptl))
6

Figure 1.11 shows graphically how this works. Y ou can combine CAR and CDR in avariety of waysto break down
nested lists. Figure 1.12 shows some examples of other CAR and CDR contractions.

22

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(car (cdr pt1))

l’ T Pt1 evaluates to the list (5 6)

(car (cdr (b 6)))

& Then Cdr returns a copy of the list
{5 6) with the first element

(car (6)) removed.

; Finally, Car returns the first
element of the list (6).

6

Figure 1.11: How CADR works

Car and Car combine to form Caar

(car (car' ((AB) CD)))=(cLar'((AB) CD))
L | % | [|

(car (AB))

;
A

23

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Cdr and Car combine to form Cdar

N +

(cdr (car' ((AB) CD))):(cziar'((AB) CD))

(cdr (A B))

;
(B)-

Car, Cdr and Car combine to form Cadar

(car(cdr{(car'((AB) CD))))= (cggar' ((AB) CD))
(car (cdr (A B)))

‘B

—]
-

Figure 1.12: The CAR and CDR functions combined to extract elements of nested lists

24

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Functionsfor Assigning Valuesto Variables

So far, you have been entering everything from the keyboard. However, you will most often want to bet information
from the drawing area of the AutoCAD screen. AutoL | SP offers a set of functions just for this purpose. These
functions are characterized by their GET prefix. Table 1.2 shows alist of these Get functions along with a brief
description.

Table 1.2: Functions that pause to allow input
FUNCTION DESCRIPTION

Getpoint Allows key or mouse entry of point values. This aways
returns values as lists of coordinate val ues.

Getcorner Allows selection of a point by using awindow. this
function requires a base point value defining the first
corner of the window. The window appears, allowing
you to select the opposite corner.

Getorient Allows key or mouse entry of angles based on Units
command setting for angles. Returns valuesin radians.

Getangle Allows key or mouse entry of angles based on the
standard AutoCAD compass orientation of angles.
Returns valuesin radians.

Getdist Allows key or mouse entry of distances. This always
returns val ues as real numbers regardless of the unit
format in use.

To see how one of these functions works, try the following exercise.
1. Turn your snap mode on by pressing the F9 function key.
2. Turn on the dynamic coordinate readout by pressing the F6 function key.
3. Enter the following at the command prompt:

(setq pt1 (getpoint))

This expression blanks the command line and waits until you enter a point. Just as with any standard
AutoCAD command that expects point input, you can enter arelative or absolute point value through the
keyboard or pick a point on the drawing area using the cursor. The coordinate of the point you pick will
become the val ue assigned to the variable Pt1 in the form of alist.

4. Move your cursor until the coordinate readout lists the coordinate 4,5 then pick that point.

25

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
5. Check the value of ptl by entering the following:

Iptl
The value (4.0 5.0 0.0) isreturned and the command prompt appears once again

Note that a Z coordinate value of 0.0 was added and that all the elements of the coordinate list are reals.

Adding Prompts

All these Get functions allow you to create a prompt by following the function with the prompt enclosed by
guotation marks. The following demonstrates the use of promptsin conjunction with these functions.

1. Enter the following expression:
(setq ptl (getpoint “"Pick thefirst point:'))
The following prompt appears:

Pick thefirst point:

2. Move your cursor until the coordinate readout reads 3,4 then pick that point.
The Get functions allow you to specify a point from which the angle, distance, or point is to be measured.

3. Enter the following:

(setq pt2 (getcorner ptl "Pick the opposite corner:''))

the following prompt appears:

Pick the opposite corner:

Pt1 isthe point variable that holds the coordinate for the last point you picked. A window appears from the
coordinate defined by Pt1.

4. Move the cursor until the coordinate readout reads 6,7 then pick that point.

Y ou can aso enter arelative coordinate through the keyboard in the unit system currently used in your drawing.

26

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Getangle and Getdist prompt you for two pointsif a point variable is not provided. Getcorner always requires a point
variable (see Figure 1.13).

Once Getcorneris used,

a box appears and drags
across the screen in response
to cursorinput.

When a point is picked,
the box disappears.

The coordinate of the last
point picked is assigned to
the variable Pt2.

(setq pt1 (getpoint))
(setq pt2 (getcorner pt1)) —

Figure 1.13: The Getcorner function asit appears on the drawing area

By using the Getpoint and getcorner functions, you can easily store point and angle values as variables.
Y ou can then refer to a stored point by entering its variable in response to a command prompt that accepts
point input.

5. Issue the line command and at the From point prompt, enter:
Iptl

A rubber-banding line appears from the point previously defined as pt1 just asif you had selected that point
manually.

6. Now enter the following:
Ipt2

A lineisdrawn from the point stored by pt1 to the point stored by pt2.

27

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Conclusion
So far, you have been introduced to the AutoL | SP interpreter and to some of the terms used and a few of the

function availablein AutoL1SP. Y ou have also been introduced to six basic rules key to the use of AutoLISP. In
summary, theserules are;

* The AutoLISP Expression is the fundamental structure of all AutoL1SP programs.

¢ All AutoLISP expressions begin and end with parentheses with the first element of the expression being an
operator or function followed by the arguments to the operator.

¢ All parentheses and double quotation marks enclosing strings must be balanced within an expression.

* AutoLISP evaluates everything. When it evaluates expressions, it does so by evaluating the arguments
before applying the arguments to the function.

¢ Numbersand strings eval uate to themselves.

* Variablesevauateto the last value assigned to them.

Y ou have seen how you can store values as variables and how you can use AutoL|SP to perform math cal culations.
Y ou may want to apply this knowledge to your everyday use of AutoCAD. Doing so will help you become more
comfortable with AutoL ISP and will give you further confidence to proceed with more complex programs.

Y ou have also looked at how lists can be broken down and put together through the CAR, CDR, Quote and List
functions. List manipulation can be a bit harry so take some time to thoroughly understand these functions. Y ou may
want to practice building lists just to get a better feel for this unusual datatype.

In Chapter 2, you will learn how to create an AutoL1SP program. Y ou will also learn how to permanently store
AutoL ISP functions so that they can be later retrieved during subsequent editing sessions.

28

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Chapter 2: Storing and Running Programs

Introduction How to Create a Program
Creating an AutoL | SP Program Local and Global Variables
What Y ou need Automatic L oading of Programs
Creating an AutoL ISP File Managing large Acad.L SP Files
Loading an AutoL ISP File Using AutoL ISP in aMenu
Running aloaded Program Using Script files
Understanding How a program Works Conclusion

Using AutoCAD Commands in a Program

| ntroduction

In the last chapter, you learned how to use the interpreter and in the process, you were introduced to some of the
basic concepts of AutoLISP. Y ou can how enter simple expressionsinto the interpreter to perform specific tasks.
But once you exit the drawing editor, all of your work in AutoLISP islost. AutoL ISP would be difficult to use if
there weren't some way of storing your functions for later retrieval. It would be especially difficult to create complex
programsif you could only load them into the interpreter from the keyboard one line at atime. In this chapter, you
will explore the development of programs through the use of AutoL ISP files and in the process, review the

AutoL | SP concepts you learned in chapter 1.

Creating an AutoL | SP Program

Instead of entering all of your functions directly into the interpreter, you have the option of writing them in a text
file outside of AutoCAD. Later, when you want to use your function, you can quickly load and run them using the
AutoL ISP Load function. Functions you store and load in this way will act just asif you entered them into the
interpreter manually. Since you can easily edit and review your functions in aword processor, you can begin to
develop larger, more complex functions and programs.

What you Need

Before you can create an AutoL I SP file, you need aword processor that will read and write ASCII files. ASCII
stands for American Standard Code for Information Interchange. As the name implies, ASCII format was created to
allow different computing systems to exchange data with each other. Most word processors allow you to generate
filesin thisformat. In this and the preceding chapters, whenever we say to open or create an AutoL ISP file, we are
asking you to open an ASCII file using your word processor. Y ou can use the Windows Notepad to do most of your

29

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

AutoL ISP work. Most other word processors will also save and read ASCI| files, usually called TXT filesin
Windows.

Creating an AutoLISP File

The most common way to store AutoL ISP programsisto saveit as atext file with the extension .Isp. Thisfile
should contain the same information you would enter through the keyboard while using the interpreter interactively.
We suggest that you create a directory called /LSP in which you can store all of your AutoL1SP programs. By
keeping your programs together in one directory, you are able to manage them as their numbers grow.

The program listed in figure 2.1 combines many of the concepts you have learned in chapter one into asingle
AutoL ISP program. Y ou will create afile containing this program then load and run the program into AutoCAD to
see how it works. We use the term program to describe a function that performs a task when entered at the
AutoCAD command prompt, even though programs such as the one in Figure 2.1 can still be considered functions

(defun ¢c:BOX (/ ptl pt2 pt3 pt4d)

(setq ptl (getpoint "Pick first corner: "))

(setq pt3 (getcorner ptl "Pick opposite corner: "))
(setq pt2 (list (car pt3) (cadr ptl)))

(setq pt4 (list (car ptl) (cadr pt3)))

(command "line" ptl pt2 pt3 ptd4 "c")

)

Figure 2.1: A programto draw boxes

1. Use the Windows notepad to create a new text file called Box1.Isp

2. Carefully enter the first line from figure 2.1. Or you can simply cut and paste the data from this
document into the Box1.Isp file.

(defun C:BOX (/ ptl pt2 pt3 pt4)

Be sure you have entered everything exactly as shown before you go to the next line. Pay special attention
to the spaces between elements of the line. Also note the capitalization of letters. Capitalization is not
particularly important at this point however.

3. Press return to move to the next line.

4. Carefully, enter the second line again checking your typing and the spacing between elements before go
to the next line. Also be sure to use the Shift-Apostrophe key for the double quotes, do not use two

30

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
apostrophes.

5. Continue entering each line as described in the previous steps. When you are done, double check your
file for spelling errors and make sure the parentheses are balanced. Save and exit the Box1.1sp file. You
now have a program that you can load and run during any AutoCAD editing session.

Loading an AutoLISP file
Toload an AutoL ISP file you use an AutoL ISP
1.Start AutoCAD and create anew file called Box1.
2. When you are in the drawing editor, enter the following at the command prompt:
(load " box")
If the Box.Isp fileisin adirectory other than the current directory, the\Isp directory for example, enter
(load " /lsp/box™)
The box program is now available for you to run.

Asyou can see, the Load function is used like any other AutoL1SP function. It isthe first element of an expression
followed by an argument. The single argument to the load function is always a string value. Notice that within the
string in the above example, the forward slash sign is used to designate a directory instead of the usual backslash.
Thisisimportant to keep in mind asit is a source of confusion to both novice and experienced AutoL | SP users.
AutoL | SP uses the backslash to denote special codes within strings. Whenever AutoL ISP encounters a backslash
within a string, it expects a code value to follow. These codes allow you to control the display of stringsin different
ways such as adding a carriage return or tab. If you use the backslash to designate directories, you must enter it
twice asin the following example:

(load " \\Isp\\box")
Once the fileisloaded, you will get the message:
C:BOX

Y ou may have noticed that Load uses a string data type for its argument. Just as with numbers, strings evaluate to
themselves, so when AutoL ISP tries to evaluate "/Isp/box" the result is "/Isp/box".

Running a Loaded Program

Once you have loaded the box program, you can run it at any time during the current editing session. However, once
you exit AutoCAD the program is not saved with the file. Y ou must re-load the program file in subsequent editing
sessions before it can be used again. Now try running the program.

1. First, set the snap mode and the dynamic coordinate readout on.
31

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
2. Enter the word Box at the command prompt. Y ou should get the following prompt:

Pick first corner:

3. If your screen isin text mode, use the F2 key to shift to the graphic screen. Move the cursor so that the
coordinate readout reads 2.0000,3.0000 and pick that point. The next prompt appears:

Pick opposite corner:

4. Now move your cursor. A window follows the motion of your cursor (see figure 2.2). Move the corner of
the window to the so that the coordinate 8.0000,6.000 is displayed on the coordinate readout then pick that
point. The box is drawn and the Command prompt returns. Figure 2.3 gives you a general description of
how this box program works.

141 AutoCAD - [Figure02-02_dwa]
Eile Edt “iew Inset Format Tool: WBA Draw Dimension Modify Bonus AEC My Tst Menu
ty 2nd kenu Help _|5’|5|
D[Q| 8|0]¥] &[m|@|st] o] o 8| alial=] 4] F|8] Hx[al®] 2
== \FEETLE o [mBlae o ByLayer EEE
| £ »
S
2| A
Sl
< || B8
O “
o
<) i
i N S
o - e

L b I
s Wl
B -7 L 1 |—I
All-Center-Dynamic<Extent=-FPrevious-Scale(i-iP) -Window-<Realtimne:: =
Fressz Ezc or Enter to exit. or right—-click to activate pop—up menu. -
Command : ‘| | j
Render toolbar

Figure 2.2: The Getcorner window

32

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Understanding How a Program Works

Up until now, you have been dealing with very simple AutoL|SP expressions that perform simple tasks such as
adding or multiplying numbers or setting system variables. Now that you know how to save AutoL ISP codein afile,
you can begin to create larger programs. The box program is really nothing more than a collection of expressions
that are designed to work together to obtain specific results. In this section, we will examine the Box program to see
how it works.
The Box program draws the box by first obtaining a corner point using Getpoint:

(setq ptl (getpoint ptl " Pick first corner: "))
The user will see only the prompt portion of this expression:

Pick first corner:
Next, the opposite corner point is obtained using Getcorner (see Figure 2.3).

(setq pt3 (getcorner ptl " Pick opposite corner: '))

Again, the user only sees the prompt string:

Pick opposite corner:

(setq pt1 (getpoint "Pick first corner: "))

This expression obtains a coordinate
value using the Getpoint function and
then assigns that value to Pt1.

pt3

(setq pt3 (getcorner pt1 "Pick opposite corner: ™))

This expression obtains a coordinate
value using the Getcorner function and
then assigns that value to Pt3.

Figure 2.3: The workings of the box program

Y ou may recall that Getcorner will display awindow as the user move the cursor. In this box program, this window
allows the user to visually see the shape of the box before the opposite corner is selected (see figure 2.2). Once the

33

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

second point is selected, the Box program uses the point coordinates of the first and opposite cornersto derive the
other two corners of the box. Thisis done by manipulating the known coordinates using Car, Cadr, and List (see

Figure 2.4).
pt2 (list (car pt3) (cadr ptl)))

pt4 (list (car ptl) (cadr pt3)))

pt3(x y)
r——————— ¥
| |
| |
| |
| |
| |
(setq pt2 (list (car pt3) (cadr pt1))) — —ay !
This expression derives the coordinate pt1(x y) pt2(x)
value for Pt2 by taking the x component ‘
of Pt3 {car pt3) and combining it with
the y component of Pt1 (cadr pt1).
ptd{x y) pt3(x y)
I T

(setq pt4 (list (car pt1) {cadr pt3))) -
This expression derives the coordinate |
value for Pt4 by taking the x component I
of Pt1 (car pt1) and combining it with i_ i
they componentof 3 (cadrpt3),. 7777777

Figure 2.4; Using Car, Cadr, and List to derive the remaining box corners

Pt2 is derived by combining the X component of Pt3 with the Y component of Pt1. Pt 4 is derived from combining
the X component of Pt1 with the Y component of Pt3 (see figure 2.5).

34

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

pt3(8 6)
r—=—==—=—7=7 i
I I
I I
I I
I I
I I
I I
S 4
pt1(2 3) pt2(8 3)
Y !
(setq pt2 (list (car pt3) (cadr pt1)))
(setq pt2 (list 8 3
(setq pt2 (8 3
— ~ptd(26) pt3(8 6)
rfr— " al
I I
I I
I I
I I
I I
I I
e - =)
pt1(2 3) pt2(8 3)
]

(setq pt4 (list (car pt1) (cadr pt3)))

(setq pt4 (list 2 6))

f

(setq pt4 (2 6)

Figure 2.5: Using Car and Cadr to derive Pt2 and Pt4

35

Copyright © 2001 George Omura, World rights

reserved

The ABC’s of AutoL ISP by George Omura

Using AutoCAD Commands in AutoLISP

Thelast linein the box program:
(command "line'" ptl pt2 pt3pt4"c'")

shows you how AutoCAD commands are used in an AutoL ISP expression (see figure 2.6). Command is an

AutoL ISP function that calls standard AutoCAD commands. The command to be called following the Command
function is enclosed in quotation marks. Anything in quotation marks after the Command function is treated as
keyboard input. Variables follow, but unlike accessing variables from the command prompt, they do not have to be
preceded by an exclamation point. The C enclosed in quotation marks at the end of the expression indicates a Close
option for the Line command (see Figure 2.7.

pt4 pt3
(command "line" pt1 pt2 pt3 ptd4 "c") ¥ 'l
This last expression draws a line
through the points Pt1, P12, P13,
and Pt4 using the Line command.
- -
pt1 pt2
Figure 2.6: Using AutoCAD commands in a function.
Expression using the = (command "line" pt1 pt2 pt3 pt4 "c")

Command Function:

Command: line
from point: Ipt1

Equivalant entry in

14

AutoCAD command —| 1© PO?mE :Pl2
window. to point: Ipt3
to point: Ipt4

1A

to point: close

Figure 2.7: Variables help move information from one expression to another.

36

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

How to Create a Program

The box program is like a collection of expressions working together to perform a single task. Each individual
expression performs some operation who's resulting val ue is passed to the next expression through the use of
variables (see figure 2.8).

Expressions Variables

[=ety pt1 (getpoint "Pick first corner. ")) pt1

[sety pt3 (getcorner ptl "Pick opposite corner) s 13

(setg pt2 (list (car pt3) (cadr pt11)) = pt2

(sety ptd (list (car pt1) (cadr pt3))) - ptd

fcommand "line” pt1 pt2 pt3 ptd "c")

Figure 2.8: Arguments are assigned to variablesin the function

Thefirst line in the box program:
(defun c:BOX (/ ptl pt2 pt3 pt4)

ties the collection of expressions that follow into acommand called Box. Defun is a special function that allows you
to define other functions. The arguments to defun are first the function name, in this case, C:BOX, followed by the
argument list. The Quote function is automatically applied to the first argument. The c: in the name tells AutoL I SP
that this function isto act like an AutoCAD command. This meansthat if the function nameis entered at the

37

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

AutoCAD command prompt, the function will be executed as an AutoCAD command. The name following the C:
should entered in upper case letters. Care should be take not to give your functions names reserved for AutoLISP's
built in functions and atoms. If, for example, you were to give the box function the name setq, then the setq function
would be replaced by the box function and would not work properly.

Table 1.1 shows alist of AutoL ISP function names that can easily be mistaken for user defined variable names.

abs if or
and length pi
angle list read
apply load repeat

atom member reverse

distan nil set
ce

eq not t
equa nth type
fix null while
float open

Table 1.1 AutoL ISP function names

Thelist that follows the name Box is an argument list. An argument list is used for two purposes. Firgt, it is used
where the function is called from another function to evaluate a set of values. For example, you could define a
function that adds the square of two variables. Try entering the following function directly into the AutoL ISP
interpreter.

(defun ADSQUARE (x y)
(+xx)(*yy)
)
1. Carefully enter the first line. Pay special attention to the parentheses and spaces.
(defun ADSQUARE (x y)

2. Once you are sure everything is correct, press Return. Y ou will see the following prompt:

38

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
>
Thistells you that your expressing is missing one closing parenthesis.
3. Enter the rest of the function at the 1> prompt again checking your typing before pressing Return.

In this example, the c: isleft out of the Defun line. By doing this, you create a function that can be used in other
functions like a subprogram or during an AutoCAD command. Well discuss thisitem in more detail later. Note that
the variables X and Y are included in the parentheses after the name of the function, ADSQUARE. Thisisthe
argument list. To use this function, enter the following at the command prompt:

(adsquare 2 4)

AutoLISP returns 20. The variables X and Y in the ADDSQUARE function take on the arguments 2 and 4 in the
order they arelisted. X takes on the value of 2, and Y takes on the value of 4 (see figure 2.9).

The AutaCAD prompt:

(1) command: (adsquare 24)
— 20

Command:

@)

The Adsquare functon

Ty

3 (cefun ADSQUARE [Xy)

(+ (=) =y)]
)

r‘_Tj The Adsguare funclion is entered at the command prompt
T using thevalues 2 and 4 fior anum ents.

(2) TheAdsguare fnction assigns the value 2 to the variable
© ¥ and the value 4 to the vanable v

(_51. When ALtolSP is done evaluating Adsauare, it returrs
the vaue 20.

Figure 2.9: Arguments are evaluated before they are assigned to variablesin the function

39

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Variables can also be used to pass values to the function. For example, if you have a variable called A whose value
is2 and avariable B whose value is 4, you could use A and B in place of the 2 and 4. Enter the following:

(setqga?2)
(setq b 4)
(adsquare ab)

AutoL ISP returns 20. Remember that AutoL|SP eval uates the arguments before applying them to the function. This
rule applies even to functions that you create yourself. In this case, the A is evaluated to 2 before it is passed to the
X variable B is evaluated to 4 before it is passed to the Y variable.

Local and Global Variables

The second use for the argument list isto determine global and local variables. Global variables maintain their value
even after afunction has finished executing. In chapter 1, when you assign the value 1.618 to the variable Golden,
Golden holds that value no matter where it is used. Any function can evaluate Golden to get its value, 1.618. Enter
the following:

(setq golden 1.618)
(adsquare 2 golden)

The value of 6.61792 isreturned. A local variable, on the other hand, holdsits value only within the functioniit is
found in. For example, the variable X in the Adsquare function above holds the value 2 only while the Square
function is evaluated. Once the function is finished running, X's value of 2 is discarded. Enter the following:

IX
Nil isreturned. The variables A, B, and Golden, however, are global and will return avalue. Enter the following:
lgolden
The value 1.618 isreturned. This temporary assigning of avalue to avariable with afunction is called binding. This
term should not be confused with the term bound which often refers to the general assignment of avalueto a
variable. In the example of X above, we say that abinding is created for the value X within the function Adsguare.
In order for binding to take place, a variable must be used within afunction that includes that variableinits

argument list. Global variables cannot have bindings since they are not by their very definition confined to
individual functions (see figure 2.10).

40

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Thevariable Golden is defined as a global variahle
having the walue of 1.618.

=

The AUtoCAD prompt Wihen the Adsguare function encounters the wariakle

Galden, it looks in the AutoLISP erwiranment to

Cormand, § setggolden 1.618) —46;} find itsvalue,

1.618 @ Thevariables ¥ and ¥ have bindings to values within
Command: {adsguare 2 goldan) the function Adsguare but they do not have values
- G 6] T80 outside of Adsguare,
Comrmand:
The Autalisp Erwironment 4@_'
L
Golden=1.618
% = nil
= nil @
The Adsgquara function
{ defun ADSQUARE (xy)

i =) ey oyl
)

While Adsquare is heing evaluated:

=2
§=1.E18 @

Figure 2.10: Local and Global variables

Since an argument list is used for two purposes, the forward slash symbol is used to separate variables used locally
from function arguments to which values are passed when the function is called. The variables used to hold the
value of arguments are listed first. Then a dlash is entered, then the list of local variables asin the following
example:

(defun square2 (x y / dx dy)
(setq dx (* x X))

(setq dy (* yy))

(+ dx dy)

)

X and Y arevariablesthat will be assigned values when the function is called initially, asin the Square function
given earlier. Dx and Dy, on the other hand, are variables assigned values within the function, so they follow the
dash sign. In either case, the variables are local. Arguments left out of the list become global. If, for example, Dy is
left out of the argument list, it's value will remain in the AutoL|SP system memory for aslong as the current editing

41

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

session lasts, and can be retrieved through eval uation by any other function. However, all of the functions and
variables you have created in this session will be lost as soon as you exit the drawing editor.

We should mention that you must include a space before and after the slash sign in the argument list. If these spaces
are not present, you will get an error message.

In both the adsquare and Square? functions above we left out the c:. As we mentioned, this allows the function to be
used by other functions like a subprogram. Y ou can also use functions defined in this way in the middle of other
commands by entering the name of the function enclosed by parentheses at the command prompt. For example, you
could define afunction that converts centimeters to inches. Carefully enter the following function:;

(defun CMTOI (cm)
(* cm 0.3937)
)
Now suppose you started the Insert command to insert a symbol file into a drawing. When the prompt
X scalefactor (1) / Corner / XYZ:
appears, you could enter
(cmtoi 90)
to signify that your symbol isto be given the scale of 90 centimeters.

The AutoL ISP function Cmtoi will convert the 90 to 35.433 and enter this value for the X scale factor prompt. This
can be quite useful where a value conversion or any other type of data conversion iswanted.

Automatic Loading of Programs

Eventually, you will find that some of your AutoL1SP programs are indispensable to your daily work. Y ou can have
your favorite set of AutoL|SP programs automatically load at the beginning of every editing session by collecting all
of your programsinto asinglefile called Acad.lsp. Be sure that Acad.Ispisin your AutoCAD directory. By doing
this, you don't have to load your programs every time you open a new file. AutoCAD will look for Acad.L SP when
it enters the drawing editor, and if it exists, AutoCAD will load it automatically.

1. Exit AutoCAD and check to seeif you aready have afile called Acad.Isp in your Acad directory. If so,
rename it to Acadtemp.lsp.

2. Next, rename the Box.lsp file to Acad.Isp. Place Acad.Isp in your AutoCAD directory if it isn't there
already.

3. Start AutoCAD and open any file. When the drawing editor loads, notice the following message in the
prompt area:

42

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
L oading acad.lsp...

Now, the box program is available to you without having to manually load it.

Though the Acad.Isp file only contained the box program, you could have included several programs and functions
in that singlefile. Then, you would have access to several AutoL|SP programs by loading just one file.

Managing Large Acad.Isp files

As you begin to accumulate more AutoL ISP functionsin your ACAD.Isp file, you will notice that AutoCAD takes
longer to load them. This delay in loading time can become annoying especially when you just want to quickly open
asmall file to make afew simple revisions. Fortunately, there is an aternative method for automatically loading
programs that can reduce AutoCAD's start-up time.

Instead of placing the programs code in Acad.lsp, you can use a program that loads and runs the programin
question. For example, you could have the following line in place of the box programin the Acad.lsp file:

(defun ¢:BOX () (load " /Isp/box") (c:box))

We will call this abox loader function. Once the above function isloaded, entering Box at the command prompt
will start it. This box loader function then loads the real Box program which in turn replaces this box loader
function. The (c:box) in the box loader function is evaluated once the actual box program has been loaded thus
causing the box program to run. C:BOX is the symbol representing the program BOX so when it evaluated, like any
function, it will run.

Asyou can see, this program takes up considerably less space that the actual box program and will therefore load
faster at start-up time. Y ou can have several of these loading programs, one for each AutoL ISP function or program
you wish to use on aregular basis. Imagine that you have several programs equivalent in size to the box program.
the Acad.lsp file might be several pageslong. A file this size can take 30 seconds to load. If you reduce each of

those programs to one similar to the box loader function above, you substantially reduce loading time. Several pages
of programs could be reduced to the following:

(defun C:PROGM 1 () (load " /Isp/progm1") (C:PROGM 1))
(defun C:PROGM 2 () (load " /Isp/progm2") (C:PROGM 2))
(defun C:PROGM 3 () (load " /Isp/progm3") (C:PROGM 3))
(defun C:PROGM4 () (load " /Isp/progm4™) (C:PROGM 4))
(defun C:PROGMS5 () (load " /Isp/progm5") (C:PROGM5))
(defun C:PROGM6 () (load " /Isp/progm6™) (C:PROGM 6))
(defun C:PROGM7 () (load " /Isp/progm7") (C:PROGM 7))

If you imagine that each of the functions being called from the above example is several lineslong then you can see

43

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

that asthe list of programsin Acad.lsp grows, the more space you will save. By setting up your Acad.Isp filein this
way, you also save memory since functions are loaded only as they are called.

Using AutoL ISP in a Menu

There are two reasons why you might write AutoL1SP code directly into the menu file. The first isto selectively
load external AutoL ISP programs asthey are needed. Y ou may have several useful but infrequently used programs
that take up valuable memory. Y ou might prefer not load these programs at startup time. By placing them in the
menu file, they will only load when they are selected from the menu. In fact, thisis what the AutoShade and
3dobjects menu options do. When you pick Ashade from either the screen or pull down menu, and AutoShade is
present on your computer, an AutoL ISP program called Ashade.lsp is loaded.

The code of the program can be present in the menu file or you can use a method similar to the one described earlier
to load external AutoL ISP files. However, if you use the menu system to load external AutoLISP files, you must a
dlightly different method.

In the example we gave for loading programs from external AutoL ISP file, the loader program is replaced by the
fully operational program of the same name. But if you were to place the following expression in a menu, the
program would load every time the menu option was selected.

[box]*C~C(load " box");box

There is nothing wrong with loading the program each timeit isrun but if the AutoL1SP file is lengthy, you may get
tired of waiting for the loading to complete every time you select the item from the menu. A better way to load a
program from the menu is to use the If function asin the following:

[box]*CAC(if (not C:box)(load " box")(princ " Box is already loaded. ");box

In this example, we show three new functions, If, Not and Princ. The If functions checks to seeif certain conditions
can be met then eval uates an expression depending on the result. The If functions expects the first argument to test
the condition that is to be met while the second argument is the expression to be evaluated if the condition istrue. A
third expression can optionally be added for cases where you want an expression to be evaluated when the test
condition returns nil. The Not function returnsa T for trueif its argument eval uates to nil, otherwise it returns nil
(seefigure 2.11).

44

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(if (not c:box) (load "box") (princ "Box is already loaded."))
| I I

|
i

¥

If (not chox) returns T for true,
then evaluate first expression. —

If (not chox) returns nil, then
evaluate the second expression.

Figure 2.11: Using the If function

So, in the menu sample above, if C:BOX does not exists, Not will return T for true and the If function eval uates the
(load "box™) expression thereby loading the Box program. If C:BOX has aready been loaded, then Not function
returns nil and box.Isp will not be loaded again. Instead, the second argument will be evaluated. This expression:

(princ " Box isalready loaded. ")
simply displays the string:

Box isalready loaded.
on the command prompt.

Y ou may have noticed that the If function does not conform to the standard rules of evaluation. Where If is used,
the second or third argument is eval uated depending on the value of the first argument.

The second reason for placing code in the menu is speed. Instead of creating a function using Defun, you can set up
aprogram to be read and executed line by line. This saves time since the interpreter reads and executes each
expression of your program as they occur in the menu listing instead of reading the entire set of expressions then
executing the program. Memory is also saved since Defun is not used to define a new function. Figure 2.11 shows a
listing of how the box program from chapter 1 would look as a menu option.

[BOX] ~CrC(setvar "menuecho" 1);+

(setq ptl (getpoint "Pick first corner: "));\+

(setq pt3 (getcorner ptl "Pick opposite corner: "));\+
(setq pt2 (list (car pt3) (cadr ptl)));+

(setq pt4 (list (car ptl) (cadr pt3)));+

line; ptl; pt2; pt3; pt4;C)

Figure 2.12: The box programas a menu option

45

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

NOTE that the Defun function is absent from the listing. When the box option is picked from the menu, AutoCAD
reads the associated text just asit would any menu option. Since the text in this case is AutoL ISP code, the
AutoL ISP interpreter evaluates each expression as if it were entered through the keyboard.

NOTE that the semicolon is used to indicate the enter key at the end of each expression. A backsash is used to
pause for input, just as you would have a backslash in other commands that require mouse or keyboard input. Also
note the use of the plus sign indicating the continuation of the menu item. Finally, note that the last line of the menu
item uses the exclamation point to enter the values of the variables as responses to the Line command. Thelast Cis
the Close option of the Line command. Y ou may have noticed a new expression:

(setvar " menuecho" 1)

The Setvar function in the above expression does the same thing as the Setvar command in AutoCAD. In this case,
it sets the menuecho system variable to 1. This setting prevents the actual AutoL ISP code from being displayed on
the command prompt.

1. Using your word processor, copy the above listing into afile called Box.mnu, again being careful to
input the listing exactly as shown above.

2. Get back into the AutoCAD drawing editor then use the Menu command to load the Box menu you just
created. The AutoCAD menu will disappear and will be replaced by the single word Box.

3. Pick the Box option from the menu, and you will see the prompts you entered when you created the Box
menu above. This program will work in the same way as the Box.Isp program.

4. To get the AutoCAD menu back, enter the command Menu and enter acad at the menu name prompt.

Since Defun is not used in this example, no argument list is used. Any variables used in the listing becomes global .
For this reason, when using menus for AutoL ISP programs, it especially important to keep track of variable names
so they do not conflict with other variables from other programs.

Using Script Files

AutoCAD has a useful feature that allows you to write a set of pre-defines sequence of command and responses
stored as an external text file. This scripting ability is similar to writing a macro in the menu file. The main
difference between menu macros and scriptsisthat scripts do not allow you to pause for input. Once ascript is
issued, it runs until it is completed. Also, unlike menu macros, scripts can exist as independent files that are called as
they are needed from the command prompt.

Although it is not commonly done, you can put your AutoL ISP programsin a script file. In fact, you can directly
convert your AutoL ISP program files directly to a script file simply by changing the file extension from .LSP to
.SCR. To load your programs, you would use the AutoCAD Script command instead of the AutoL ISP load function.
There may be times when you want to embed AutoL | SP code into a script you have written. Y ou can either write the
code directly into the script file or use the load function to load an AutoL ISP file from the script.

46

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Conclusion

Y ou have been introduced to some new ways of getting more usefulness from AutoL | SP.

¢ Thefunction Defun alows you to create programs that can be invoked from the AutoCAD
command line.

* Variables can be used to pass information between expressions and functions.
* Functions can be created that can be used to respond to AutoCAD commands.
* Functions and programs can be stored as files on disk to be easily retrieved at alater date.

* Frequently used functions can be stored in afile called Acad.Isp to be loaded automatically.
We encourage you to try creating some simple functions and save them to disk. Y ou can start out with the functions
presented in this chapter or you can try your hand at writing some functions on your own. Y ou may also want to try

using the menu file to store programs or you may want to keep each of your programs as separate files and load
them asthey are needed.

In the next chapter, you will be introduced to some of the ways you can plan, organize and execute a programming
project.

47

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 3: Organizing a Program

Introduction Creating a 3D Wedge Program
Looking at a Programs Design Making Y our Code More Readable
Outlining your Programming Project Using Prettyprint

Using Functions Using Comments

Adding a Function Using Capital and L ower Case L etters
Reusing a Function Dynamic Scoping

Creating a 3D Box program Conclusion

| ntroduction

When you write a program, you are actually setting out to solve a problem. It is often helpful to develop a plan of
how you want to solve your problem. The plan may need revisions along the way, but at least it givesyou a
framework out of which you can get both an overall and detailed understanding of the problem you are trying to
solve. Often the most monumental problem can be broken into parts that can be easily dealt with.

By taking some time to analyze your goals and writing down some preliminary plans, you can shorten your program

development time considerably. In this chapter we will discuss some methods for planning your programming
efforts and along the way, you will get amore detailed look at how AutoL ISP works.

Looking at a Programs Design
As simple as the box.Isp programis, it follows some basic stepsin its design. These steps are as follows:
1. Establish the name of the program or function
2. Obtain information by prompting the user
3. process the information
4. Produce the output

Letslook at a breakdown of the program to see these steps more clearly. The first line defines the program by
giving it aname and listing the variablesit isto use.

48

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(defun c:box (/dx dy ptl pt2 pt3 pt4)

The second and third line of the program obtain the minimum information needed to define the box.
(setq ptl (getpoint " Pick first corner: "))
(setq pt3 (getcorner " Pick oppositecorner: "))
The fourth, fifth, and sixth lines process the information to find the other two points needed to draw the box.
(setq pt2 (list (car pt3) (cadr ptl)))
(setq pt4 (list (car ptl) (cadr pt3)))
The last line draws the box in the drawing editor.
(command "line" ptl pt2pt3pt4"c'")
Thisfour step process can be applied to nearly every program you produce.

Y ou should also consider how standard AutoCAD commands work. A program that has an unusual way of
prompting for information will seem jarring and unfamiliar to the user. By designing your prompts and prompt
seguence to match closely those of AutoCAD's, your programs will seem more familiar and therefore easier to use.
For example, when a command requires editing of objects, you are first prompted to select the objects to be edited.
So when you design a program that performs some editing function, you may want to follow AutoCAD's lead and
have your program select objectsfirst (we will cover functions that allow you to select objects later in this book).

Outlining Your Programming Project

But before you get to actual writing of code, you will want to chart a path describing what your program is to do.
The box program might be planned as the following sequence of statements:

1. Get the location of one corner of the box. Save that location as a variable called pt1.
2. Get the location of the other corner of the box. Save that location as a variable called pt3.

3. calculate the other two corners by using information about the known corner locations pt1 and pt3.

4. Draw the box

The above list outlines the procedures needed to accomplish your task. Thistype of list is often called Pseudocode.
It is aplain language description of the code your program isto follow. It acts like an outline of your programs code.
Y ou could even incorporate your pseudocode as comments to the actual code of the program. Just as with an outline,
you may have to go through several iterations of lists like this before actually hitting on one that seem workable.

Along with the pseudocode of a program, you may also want to sketch out what your program is supposed to do,
especialy if your program is performing some graphic manipulation. Figure 3.1 shows a sketch done as an aid to

developing the box program.
49

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(2) Get lacation of opposite corner
and assign to Pt3.

N -
(1) Get location of first comer —/

and assign to Pl

| |
| |
{3) Derive locations of other corners : :
and assign to Pt2 and P4, . .

I I

(4} Draw box through points.

Figure 3.1: Sample sketch used to develop box.Isp

Using Functions

We have broken the box program down conceptually into three processes. We can also break it down physically by
turning each process into a function asin the following:

50

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun getinfo ()

(setq ptl (getpoint " Pick first corner: "))
(setq pt3 (getcorner ptl " Pick opposite corner: "))
)

(defun procinfo ()

(setq pt2 (list (car pt3) (cadr ptl)))

(setq pt4 (list (car ptl) (cadr pt3)))

)

(defun output ()

(command " line" ptl pt2 pt3pt4“c'")

)

Y ou now have three functions that can be called independently. We now need a way to tie these functions together.
We can write amain program that does just that:

(defun C:BOX1 (/ ptl pt2 pt3 pt4)

(getinfo)

(procinfo)

(output)

)
Let's see how this new version of the Box drawing program works.
1. Open anew AutoL | SP file called box1.Isp.

2. Enter the above three functions, Getinfo, Procinfo, and output, along with the new box program. Y our file should
look like Figure 3.2.

3. Open anew AutoCAD file called chapt3= and load the Box1.Isp file.

4. Run the C:BOX1 program. Y ou will seethat it acts no differently from the first box program in chapter 1.

51

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun getinfo ()

(setq ptl (getpoint "Pick first corner: "))

(setqg pt3 (getcorner ptl "Pick opposite corner: "))
)

(defun procinfo ()

(setq pt2 (list (car pt3) (cadr ptl)))
(setq pt4 (list (car ptl) (cadr pt3)))
)

(defun output ()
(command "pline" ptl pt2 pt3 pt4 "c")
)

(defun CBOX1 (/ ptl pt2 pt3 pt4)
(getinfo)

(procinfo)

(out put)

)

Figure 3.2: The contents of box1.Isp

The C:Box1 program listed above acts as a sort of master organizer that evaluates each of the three functions,
getinfo, procinfo, and output, asthey are needed. This modular approach to programming has several advantages.

First, since each function exists independently, they can be used by other programs thereby reducing the amount of
overall code needed to run your system. Though in the above example, we actually increased the size of the Box
program, as you increase the number of program you use, you will find that you can use functions from this program
in other programs. Functions you write in this way can serve astools in building other programs.

Second, while writing programs, you can more easily locate bugs since they can be localized within one function or
another. Whenever AutoCAD encounters an error, it displays an error message along with the offending expression.

Third, smaller groups of code are more manageable making your problem solving task seem lessintimidating. The
actual Box program represents the problem in general terms while the functions take care of the details. Y ou can get
aclearer idea of how your programs work because clarity is built into the program by virtue of this modular
structure.

Finally, features can be added and modified more easily by "plugging" other functions either into the main program
or into the individual functions that make up the program.

52

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Adding a Function

Asgreat aprogram AutoCAD is, it does have some glaring shortcomings. One is the fact that it does not
dynamically display relative X and Y coordinates. It does display relative polar coordinates dynamically, but often,
it is helpful to see distancesin relative X and Y coordinates. One example where this would be useful isin the
creation of floor plans where a dynamic reading of relative X and Y coordinates could help you size roomsin a
building. It would be also helpful if this dynamic readout would display the rooms area as the cursor moved. Figure
3.3 Shows a function that displaysrelative X and Y coordinatesin the status line.

(defun RXY (/ pt It x last pick Iptl)
(if (not ptl)(setq Iptl (getvar "lastpoint"))(setq Iptl ptl))
(while (/= pick t)
(setqg pt (cadr (setq It (grread t))))
(if (= (car It) 5)(progn
(setg x (strcat
(rtos (- (car pt) (car Ipt1))) " x "
(rtos (- (cadr pt) (cadr Iptl))) " SI="
(rtos (*(- (car pt) (car Iptl))
(- (cadr pt) (cadr Iptl))
)
2 2
)

(grtext -2 x)

)
(setq pick (= 3 (car I1t)))

)
(cadr It)
)

Figure 3.3: The RXY function

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open an AutoL ISP file called Rxy.lsp and copy the program listed in figure 3.4. Check your file
carefully against the listing to be sure it is correct.

3. Return to the Chapt3 AutoCAD file.
4. Turn on the snap and dynamic coordinate readout.

5. Load Rxy.LSP then start the line command.

53

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
6. At the First point prompt, pick the coordinate 2,2 then, at the next point prompt, enter the following:

(rxy)

Notice how the coordinate readout now dynamically displaysthe relative XY coordinates from the first
point you picked.

7. Move the cursor until the coordinate readout lists 6.0000,7.0000 then pick that point. A line is draw with
a displacement from the first point of 6,7.

We won't go into a detailed explanation of this function quite yet. Imagine, however, that you have just finished
writing and debugging this function independent of the box program and you want to add it permanently to the box
program.

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open the box1.1sp file and change the Getinfo function to the following:
(defun getinfo ()
(setq ptl (getpoint " Pick first corner: "))
(princ " Pick opposite corner: ")
(setq pt3 (rxy))
)

Y our new Box1.Isp file should look like figure 3.4. We have replaced the expression that obtains PT3 with
two lines, one that displays a prompt:

(princ " Pick opposite corner: ")
and another that uses the RXY function to obtain the location of PT3:
(setq pt3 (rxy))

Now when you use the box program, the width and height of the box along with its area are displayed on
the status prompt.

3. Return to the Chapt3 file.

4. Load the Rxy.lsp and Box1.Isp files.

5. Run the C:BOX1 program by entering box1 at the command prompt.

6. Make sure the Snap mode and Dynamic coordinate readout are both on.

7. At the Pick first corner prompt, pick the coordinate 2,3.

54

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

8. At the Opposite corner prompt, move the cursor and note how the coordinate readout responds. If you
move the cursor to the first point you picked, the coordinate readout will list 0,0 telling you that you are a
relative distance of 0,0 from the first corner.

9. Now move the cursor until the coordinate readout lists 5.0000,5.0000 then pick that point. Y ou have
drawn a box exactly 5 unitsin the x axis by 5 unitsin the y axis.

(defun getinfo ()
(setqg ptl (getpoint "Pick first corner: "))
(princ "Pick opposite corner: ")

(setq pt3 (rxy))
)

(defun procinfo ()

(setqg pt2 (list (car pt3) (cadr ptl)))
(setq pt4 (list (car ptl) (cadr pt3)))
)

(defun output ()
(command "pline" ptl pt2 pt3 pt4 "c")
)

(defun CBOX1 (/ ptl pt2 pt3 pt4)
(getinfo)

(procinfo)

(out put)

)

Figure 3.4: Therevised Box1.Isp file

In the above exercise, after you pick the first corner of the box, the window no longer appears. Instead, the status
line changes to display the height and width of you box dynamically as you move the cursor. It also displays the
square inch area of that height and width. By altering a function of the main C:BOX1 program, you have added a
new featuresto it. Of course, you had to do the work of creating Rxy.lsp but Rxy.lsp can also be used to
dynamically display relative X Y coordinatesin any command that reads point values.

Reusing Functions

Y ou have seen that by breaking the box program into independent functions, you can add other functionsto your
program to alter the way the program works. In the following section, you will create two more programs, one to
draw a 3D rectangle, and one to draw a wedge, using those same functions from the box program.

55

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Creating an 3D Box program

To create a 3D box from arectangle, all you really need to do is extrude your rectangle in the Z axis then add a
3dface to the top and bottom of the box. Extruding the box can be accomplished using the Change command. Figure
3.5 shows how this would be done with standard AutoCAD commands.

First, draw a polyline rectangle.

Mext, use the Properties option
under the Change command to give
the rectangle a thickness.

Finally, use the 3dface cormmand
to add Sdfaces to the top and
bottom of the extruded rectangle.
The .xy point filter can be used
to lacate the 7 axis of the top

of the rectangle.

Figure 3.5: Drawing a three-dimensional box manually

Y our box program also needs a way to prompt the user for a height. We can accomplish these things by creating a
modified version of the C:BOX1 main program. Figure 3.6 shows such a program.

56

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun C.3DBOX (/ ptl pt2 pt3 pt4 h)

(getinfo)

(setg h (getreal "Enter height of box: "))
(proci nfo)

(out put)

(command "change" "L" "" "P" "th" h ""

"3df ace" ptl pt2 pt3 pt4 ""
"3dface" ".xy" ptl h ".xy" pt2 h
".xy" pt3 h ".xy" pt4d h""

Figure 3.6: A programto draw a 3D box.

In the following exercise, you will add the 3D box program to the Box1.Isp file then run C:3DBOX.

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open the box1.1sp file again and add the program listed in figure 3.6 to thefile. Y our Box1.Isp file
should look like figure 3.7.

3. Return to the Chapt3 AutoCAD file.

4. Load Box1.lsp again. If you had to Exit AutoCAD to edit Box1.Isp, Load Rxy.lsp aso.
5. Start the C:3DBOX program by entering 3dbox at the command prompt.

6. At the Pick first corner prompt, pick a point near the coordinate 2,3.

7. At the Pick opposite corner prompt, move the cursor until the coordinate readout lists 7.0000,5.0000 then
pick that point.

8. At the Enter height prompt, enter 6. A box appears.
9. Issue the Vpoint command and at the prompt:
Rotate/<View point> <0.0000,0.0000,1.0000>:
10. Enter -1,-1,1. Now you can see that the box is actually a 3d box.

11. Issue the Hide command. The box appears as a solid object.

57

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun getinfo ()

(setqg ptl (getpoint "Pick first corner: "))
(princ "Pick opposite corner: ")

(setqg pt3 (rxy))

)

(defun procinfo ()

(setq pt2 (list (car pt3) (cadr ptl)))
(setq pt4 (list (car ptl) (cadr pt3)))
)

(defun output ()
(command "pline" ptl pt2 pt3 pt4 "c")
)

(defun C:BOX1 (/ ptl pt2 pt3 pt4)
(getinfo)

(proci nfo)

(out put)

(defun C.3DBOX (/ ptl pt2 pt3 pt4 h)
(getinfo)

(setg h (getreal "Enter height of box: "))
(procinfo)

(out put)

(comand "change" "L" "" "P" "th" h ""
"3df ace" ptl pt2 pt3 pt4 ""
"3dface" ".xy" ptl h ".xy" pt2 h
"oxy" pt3 h ".xy" pt4 h""

)

)

Figure 3.7: The Box1.1sp file with the C:3DBOX program added.

In the C:3DBOX program, aline is added to obtain height information.

(setq h (getreal " Enter height of box: "))
In most cases, it isimpractical to try to enter a 3D point value using a cursor, though it can be done. We use the

Getreal function here to allow the input of areal value for the height since thisis the simplest route to obtain the
height information.

58

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

To actually draw the box, other AutoCAD commands have been added to give the box athird dimension:

(command " change" "L" "" "P" "th" h""
" 3dface" ptl pt2 pt3 pt4""

" 3dface” " .xy" ptlh".xy" pt2h

" Xxy" pt3h".xy" ptdh""

)

This expression issues several AutoCAD commands to turn the simple rectangle drawn by the Output function into a
3 dimensional box. the first line changes the thickness of the box previously drawn by the Output function. The
second line draws a 3dface at the base of the box to close the bottom of the box. The third and fourth lines draw a
3dface at the top of the box by using the .xy point filter to designate the x and y coordinate of each corner, then
entering the Z coordinate using the H variable.

59

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

{defun C:30BOX {f ptl pt2 pt3 ptd k)
{getinfo)
{setg h {getreal "Enter height of box: ")

The user is prompted Cornrnand: Pick first comer;
far infarmation by the Pick opposite carner:
Getinfo function and the Enter height of b

third line ofthe pragram.

The AutoCAD prompt:

{procinto) o
foutput)

The twa-dimensional box is drawn
using the Procinfo and Qutput
functions.

fcommand "change" "Last" " " "Propeies" "thickness" b """

The twa-dimensional box isextruded
using the Change command.

"Idface" ptl pt2 pt3 pt4 "

"Idface" "y ptl byt pt2 h =
Ty ptd Rty ptd RO

]

)
A 3dface is added to the bottom of

the extruded rectanale. A 3dface is
also added to the top of the
extruded rectangle using the xy
point filter. The Hide command is
issued to see the box with hidden
lines removed.

Figure 3.8: A 3D box using the C:3DBOX program

Y ou may have noticed that although you added the program C:3DBOX to the Box1.Isp file, you still called up the
program by entering its name, 3DBOX. We should emphasize here that AutoL ISP files are only use as the vessel to
hold your program code. AutoL|SP makes no connection between the program name and the name of the file that
holds the program. Y ou could have called Box1.1sp by another name like Myprogm.Isp or Mybox.Isp, and the
programs would still run the same. Of course, you would have to give the appropriate name when loading the file.

60

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Creating a 3D Wedge Program

Let's create a new program that draws a wedge shape based on similar information given for the 3d box. Figure 3.9
shows how you might draw a wedge based on the rectangle drawn from the box program.

First drawr a polyline rectangle.

Mext, draw a 3dface for the
hack of the wedge . Use the
>y point filter to get the £
coordinate for the top two
COFMMErs.

Continue the 3dface to draw
the top face of the wedge.

Use the 3dface command
again to drawi one side of
the wedge, then copy the
side to the opposite side
to complete the wedge.

AR

Figure 3.9: A programto draw a 3D wedge

The procedure outlined in Figure 3.9 was converted into the following AutoL1SP program.

61

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun C. 3DWEDGE (/ ptl pt2 pt3 pt4 h)

(getinfo)

(setg h (getreal "Enter height of wedge: "))

(procinfo)

(out put)

(command "3dface" ptl pt4 ".xy" pt4 h ".xy" ptl h pt2 pt3 ""

"3dface" ptl pt2 ".xy" ptl h pt1 ""
"copy" "L" "" ptl pt4

Try the following exercise to see how it works.

1. Exit AutoCAD temporarily either by using the AutoCAD Shell command or by using the End command
to exit AutoCAD entirely.

2. Open the box1.1sp file again and add the program listed above to the file.
3. Return to the Chapt3 AutoCAD file.
4. Load Box1.lsp again. If you had to Exit AutoCAD to edit Box1.Isp, Load Rxy.lsp also.
5. Erase the box currently on the screen.
6. Start the C:3DWEDGE program by entering 3dwedge at the command prompt.
7. At the Pick first corner prompt, pick a point at the coordinate 2,3.
8. At the Pick opposite corner prompt, pick a point so the wedge's baseis 7 units wide by 5 units wide.
9. At the Enter height prompt, enter 6. A wedge appears.
10. I'ssue the hide command. The wedge appears as a solid object.
This Wedge program is nearly identical to the C:3DBOX program with some changesto the last expression.
(command " 3dface" ptlptd" .xy" pt4h" .xy" ptlhpt2pt3""
" 3dface" ptlpt2" .xy" ptlhptl""

"copy" "L" "" ptlpt3
)

62

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Thefirst line of this expression draws a 3d face on the top and vertical face of the wedge. It does this by using
AutoCAD's .xy point filter to locate pointsin the Z coordinate. The second line draws a 3dface on the triangular side
of the wedge again using the .xy point filter. The last line copies the triangular face to the opposite side of the
wedge. Figure 3.10 shows the entire process.

(defun C:IWEDGE (/ ptl pt2 pt3 ptd h)

{getinfo) The AutaCAD prompt:
(setg h (getreal "Enter height of wedge: "))

The useris prompted

Comrmand: Pick first corher:
Pick opposite corner:

for information by the Erter haight of wedde:
Setinfo function and the nISTREIgnt ol wecge:
third line of the program. e

}-\‘b'\
{procinfo) =
{output) Q{L
The two-dimensional rectangle is drawn

using the Procinfo and Output
functions.

fcommand "3dface” pt1 ptd "xy" ptd h
"y ptl hopf2 pt3 "

3dfaces are drawn for the side
and top surfaces. The xy paint
fiter is used to locate the top
twa points of the wedge.

"Jdface" pt1 pt2 "wy" pt1 h opt? " e
"copy” "L " ptl ptd

A Jdface is drawn for one of
the triangular sides and then
copied to the other side
to complete the wedge.

Figure 3.10: Box1.Isp with the C: 3DWEDGE program added

Now you have three programs which use as their basic building blocks the three functions derived from your
original Box program. Y ou also have a function, rxy, which can be used independently to dynamically display
relative x y coordinates.

63

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Making Your Code More Readable

The box program is quite short and simple. As your programs grow in size and complexity, however, you will find
that it becomes more and more difficult to read. Breaking the program down into modules help to clarify your code.
There are other steps you can take to help keep your code readable.

Using Prettyprint

The term Prettyprint is used to describe away to format your code to make it readable. Indents are used to offset
portions of code to help the code's readability. Figure 3.12 shows three examples of the C:3DBOX program. The
first exampleis arranged randomly. The second lists each expression as a line while the third makes use of
prettyprint to organize the code visually.

(defun C:3DBOX (/ ptl pt2 pt3 pt4 h) (getinfo)

(setg h (getreal "Enter height of box: ")) (procinfo)(output)
(command "change" "Last" "" "Properties" "thickness" h

' "3dface" ptl pt2 pt3 pt4 "" "3dface" ".xy" ptl h ".xy" pt2
h ".xy" pt3 h ".xy" pt4d h""))

(defun C.3DBOX (/ ptl pt2 pt3 pt4 h)

(getinfo)

(setg h (getreal "Enter height of box: "))

(procinfo)

(out put)

(command "change" "Last" "" "Properties" "thickness" h ""

"3dface" ptl pt2 pt3 pt4 ""
"3dface" ".xy" ptl h ".xy" pt2 h ".xy" pt3 h ".xy" ptd4d h ""))

Figure 3.12 (continued on next page): Three ways to format the 3dbox program code

64

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun C. 3DBOX (/ ptl pt2 pt3 pt4 h)

(getinfo)
(setg h (getreal "Enter height of box: "))
(procinfo)
(out put)
(conmand "change" "Last" "" "Properties" "thickness" h ""

"3dface" ptl pt2 pt3 pt4 ""
"3dface" ".xy" ptl h ".xy" pt2 h
".xy" pt3 h ".xy" pt4 h""

Figure 3.12 (continuet)

In the third example, notice how the listing is written under the command function. Each new command to be issued
using the command functions is aligned with the next in a column. This lets you see at a glance the sequence of
commands being used. Look at the RXY .Isp function in figure 3.3. As you progress through the book, make note of
how the listings are written.

Using Comments

It often helps to insert comments into a program as a means of giving a verbal description of the code. Figure 3.13
shows the box program from chapter 1 including comments. The comments start with a semicolon and continue to
the end of the line. When AutoL ISP encounters a semicolon, it will ignore everything that follows it up to the end of
the line. Using the semicolon, you can include portions of your Pseudocode as comments to the program code.

65

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

; Function to draw a sinple 2 di nensional box

(defun c: BOX (/ ptl pt2 pt3 pt4) ; define box function
(setqg ptl (getpoint "Pick first corner: ")) ;pick start corner
(setqg pt3 (getpoint ptl "Pick opposite corner: "));pick other corner
(setq pt2 (list (car pt3) (cadr ptl))) ;derive secondcor ner
(setq pt4 (list (car ptl) (cadr pt3))) ;derive fourth corner
(command "line" ptl pt2 pt3 pt4 "c") ; draw box

) ;cl ose defun

;Function to display relative XY coordinates in status line

1

(defun RXY (/ pt It x last pick |ptl)

(if (not ptl)(setq Iptl (getvar "lastpoint"))(setq Iptl ptl))

(while (/= pick t)
(setqg pt (cadr (setq It (grread t))))
(if (= (car It) 5)
(progn
(setqg x (strcat
(rtos (- (car pt) (car Ipt1))) " x "

(rtos (- (cadr pt) (cadr Iptl))) " sI="

(rtos (*(- (car pt) (car Iptl))
(- (cadr pt) (cadr Iptl))

) ;close mult
2 2) ;close rtos
) ;close strcat
) ;close setq X
(grtext -2 x)
) ; cl ose progn
) close if
(setqg pick (= 3 (car 1t)))
)
(cadr It)
)

;get last point
;read cursor
;location

;get X coord

;get Y coord
;get area

;di splay status

;test for pick
;close while
;return | ast
;coordi nate

Figure 3.13: Sample of code using comments.

66

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Using Capitals and Lower Case Letters

In programming, case sensitivity is aterm that means a programming language treats upper an lower case letters
differently. Except where string variables occur, AutoL | SP does not have any strict requirements when it comes to
using upper and lower case lettersin the code. However, you can help keep you code more readable by using upper
case letters sparingly. For example, you may want to use all uppercase letters for defuned function names only. That
way you can easily identify user created functions within the code. Y ou can also mix upper and lower case letters for
variable names to help convey their meaning. This can help give the variable name more significance while still
keeping the name short to conserve space. For example, Y ou might give the name NewWrd for a variable that
represents a new string value. NewWrd is more readable than say newwrd.

The only time AutoL ISP is case sensitive is where strings variables are concerned. The string "Yes" is different
from "yes' so you must take care when using upper and lower case lettersin string variable types. We will cover this
topic in more detail in the next chapter.

Dynamic Scoping

Y ou may have noticed that in the functions getinfo, procinfo, and output, the argument list is empty (see figure 3-2).
There are no variables local to those functions. The variables used in the programs C:BOX1, C:3DBOX, and
C:3DWEDGE appear in their argument lists rather than in the functions being called by these programs. A binding
is created between variables and their values within these programs so when the program ends, the variables loose
the value assigned to them.

On the other hand, there are no variable bindings created within the individual functions called by the main
programs so when the functions assign a value to a variables, the variables are free to all the functions used by the
main program. This ability of afunction to access variables freely from the calling function is known as Dynamic
Scoping.

Whenever afunction looks for avariables value, it will look at its own local variablesfirst. If the variables value is
not found, it then looks to the calling function or program for the value. Finally, if no value isfound there, the
function will look at the global environment for avalue.

We saw this occur in chapter 2 with the Adsquare function. Adsquare looked in the AutoL1SP global environment
for the value of Golden since golden was not aformal argument to Adsquare (see figure 2.10).

In the case of the C:BOX1 program, all the variables used by the program and the functionsit calls are included in
its argument list. For this reason, variables have a binding within C:BOX1 but are free tp any of the functions called
by C:BOX1.

An interesting affect of Dynamic Scoping is the ability to maintain two variables of the same name, each holding
different values. To see how this works, do the following.

1. Erase the wedge currently on the screen.
2. Enter the following expression:
(setq pt1 (getpoint))
3. pick apoint near the coordinate 6,1. This assigns the coordinate you pick to the variable pt1.
67

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
4. Start the C:BOX1 program.

5. At the Pick first corner prompt, pick a point near the coordinate 2,3.

6. At the Pick opposite corner prompt, pick a point near so the box is about 7 units wide by 5 units wide.
The 2D box appears.

7. Issue the line command and at the first point prompt, enter:
Iptl

9. Theline will start at the point you selected in step 3 of this exercise.

The AutaCAD prormpt:

Command: { setq pt1 (getpoint)))
E1)

—t Command: box1

Pick first corner:

Pick opposite corner:

Carmmand: Iptl

B 1)

The AutollSP Environment

IP”Z(’BH |

The Box1 program

defun C:BOXT (/pt1 ptZ pt3 ptd)

Eg etinfo)
Ep rocinfa) I—-—IWI
)

output)

(defun getinfo ()
(setq pt1 (getpoint "Pick first corner:) 44—
(princ "Pick opposite cormer: ")
(sety pt3 (rxyl)

)

defun procinfo ()

(=ety pt2 (list (car pt3) (cadr pt1))) -
(sety ptd (list (car pt1) (cadr pt3)) =2
]

[defun output [}
fcomrrand "line" pt1 p2 pt3 ptd "c")
)

Figure 3.13: Dynamic Scoping
68

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In the pervious example, you assigned a point location to the variable pt1. Then you ran the C:BOX1 program which
also assigns avalue to avariable called ptl. Ptl in the C:BOX1 program is assigned the coordinate of the first corner
point you pick. After the box is drawn, you start the line command and enter the variable pt1 as the starting point.

Y ou might expect the line to start from the corner of the box since it is the point last assigned to ptl. Instead, the line
begins at the location you had assigned to pt1 before you ran the wedge program. When you ran the C:BOX1
program, two versions of ptl existed, The global version of ptl you created before you ran C:BOX1, and the version
of ptl created by the C:BOX1 program. The C:BOX1 version of ptl lives and dies within that program and has no
affect on the global version of ptl (see figure 3.13).

Dynamic Scoping of variables can simplify your program coding efforts since you don't have to create an argument
list for every functions you write. It can also simplify your management of variables. Dynamic Scoping can also
create some interesting side affects as seen in the last exercise. For this reason, you should try and keep track of your
variables and use global variables sparingly.

Conclusion
In this chapter you examined methods for designing your programsin an organized fashion. The box example,
though simple enough to leave as a single program, allowed you to explore the concept of modular programming. It

also showed how a program might be structured to give a clear presentation to both the creator of the program and
those who might have to modify it later.

69

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 4: Interacting with the Drawing
Editor

Introduction
Using Getreal and Getint

Prompting the User for Distances

How to Control User Input

How to Use Getdist

Using Initget
A Sample Program Using Getdist

Prompting for Dissimilar Variable Types

How to Get Angle Values

Using M ultiple Keywords

Using Getangle and Getorient

How to Select Groups of Object
Using Ssget
A Sample Program Using Ssget

How to Get Text | nput

Using Getstring

Using Getkword
Conclusion

How to Get Numeric Values

| ntroduction

In the first three chapters of the book, you learned the basics of AutoLISP. Y ou now have a framework within which
you can begin to build your programs. We can now discuss each built-in AutoL1SP functions without loosing you in
AutoL ISP nomenclature. In this and subsequent chapters, Y ou will be shown how each of the built-in functions
work. Since the AutoL ISP interpreter can be used interactively, you can enter the sample expressions shown in this
chapter at the AutoCAD command prompt to see first hand how they work.

A key element in a user defined function is how it obtains information from the user. In this chapter, you will look
at some built in functions that expedite your programs information gathering. Y ou have already seen the use of two
of these functions, Getpoint and Getcorner, in chapter 2 and 3.

70

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Prompting the user for Distances

Y ou will often find the need to prompt the user to obtain a distance value. At times, it is easier for the user to select
distances directly from the graphic screen by using the cursor. AutoL | SP provides the Getdist function for this
purpose.

How to use Getdist
The syntax for Getdist is:

(getdist [optional point value] [optional prompt string])

Y ou can optionally supply one or two arguments to Getdist. These arguments can be either string values which will
be used as prompts to user when the program runs, or point values indicating a position from which to measure the
distance. Getdist will accept both keyboard input as well as cursor input and it always returns values in real numbers
regardless of what unit styleis current. This meansthat if you have your drawing set up using an architectural unit
style, Getdist will return avalue in decimal units. The following exercises will demonstrate these uses.

There are three ways to use Getdist. First, you can useit to input a distance by picking two points using the cursor.
For example:

1. Open afile called Chapt4=. Set the snap mode and dynamic coordinate readout on.
2. Enter the following:
(setq dist1 (getdist " Pick point or enter distance: "))
The prompt line will display:
Pick first point or enter distance:
This prompt is the same as the string value used as the argument to Getdist. At this prompt, you can enter a
numeric value in the current unit style or in decimal units or you can pick a beginning point using the
Ccursor.
3. Pick apoint at coordinate 3,3 with your cursor. Y ou will get the prompt:
Second point:
and a rubber banding line will appear from the first point selected.

4. Pick asecond point at coordinate 8,3 with you cursor, the distance between the two points selected is
assigned to the variable dist1.

5. Enter the following:

Idistl

71

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
The distance value stored by dist1 is displayed.

5.0
Using the same expression as above, you can also enter a distance value at the keyboard.
1. Enter the following:
(setq dist1 (getdist " Pick point or enter distance: "))
The prompt line will display:
Pick first point or enter distance:

2. In the previous exercise, you picked a point at this prompt and Getdist responded by asking for a second
point. Instead of picking a point, enter the value of 6.5. Once you have done this, 6.5 is assigned to the variable

distl.
3. Enter the following:
Idistl
The distance value stored by distl is displayed.
6.5
A third way to use Getpoint is to supply a point variable as an argument.
1. Enter the following at the command prompt:
(setq ptl (getpoint " Enter a point: "))

When the Enter a point prompt appears, pick a point at the coordinate 3,3. The coordinate 3,3 is assigned
to the variable pt1.

2. Enter the following expression:
(setq distl (getdist ptl " Enter a second point: "))

Notice that the variable pt1 is used as an argument to getdist. A rubber-banding line appears from pt1 and
the prompt displays the string prompt argument you entered with the expression.

3. Pick a point at the coordinate 9,6. The distance from pt1 to the point 9,6 is assigned to the variable dist1.
4. Enter the following to get the distance stored by dist1:
Idistl
6.7082
Asyou can see, getdist is quite flexible in the way it will accept input. This flexibility makes it ideal when you need
72

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

to get sizes of objects from the user. The user has the flexibility to either enter a size value at the keyboard or
visually enter a size by picking points from the drawing area. The rubber-banding line provided by getdist allows the
user to visually select asize. Several AutoCAD commands act in asimilar manner. For example, the Text command
allows you to select atext size either by entering a height or by visually selecting a height using your cursor. Figure
4.1 summarizes the three ways you can use Getdist.

(D Picking two points using the cursor R e

(getdist "Pick first point or enter distance: ")

+
AutoCAD prompt: B
Pick first point or enter distance: Second point:
5.0
@ Entering a distance through the keyboard et e

(etdist "Pick first point or enter distance: ")

AutoCAD prompt:
Pick first point or enter distance: 6.5
65

@ Using a pre-defined coordinate for reference jemem e

(sety ptl (yetpoint "Enter a point: ")
igetdist pt1 "Enter a second point: ")

+33)

AutoCAD prompt:
Enter a second point:
6.7 052

Figure 4.1: Three methods that Getdist accepts for input

73

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
A Sample Program Using Getdist

At times, you may need to find the distance between two pointsin aformat other than the current unit style. Figure
4.2 lists afunction that displays distancesin decimal feet, acommon engineering system of measure that AutoCAD
does not directly support in release 10.

; Function to get distance in decimal feet -- Decft.lsp------------------------
(defun decft (/ dstl dstls)

(setq dstl (getdist "Pick first point or enter distance: ")) ;get distance
(setqg dstls (rtos (/ dstl 12.0) 2 4)) ;convert real value to string

(terpri) ;advance pronpt one line

(strcat dstls " ft.") ;return string plus "ft."

)

Figure 4.2: A programto display decimal feet

1. Exit AutoCAD by using the End command and open an AutoL1SP file called Decft.Isp

2. Copy thefilelisted in Figure 4.1 into the Decft.Isp file. When you are done, and you are certain you have
corrected all transcription errors, close thefile.

3. Open an AutoCAD file called Chapt4. Be sure add the = sign at the end of the file name.

4. Use the Setup option on the main menu to set up you drawing using the Architectural unit style at a scale
of 1/8 inch equals 1 foot. Select a sheet size of 11 by 17.

5. Set the snap distance to 12 by 12 and turn on the Dynamic coordinate readout.
6. Load the Decft.Isp file.
7. Enter Decft at the Command prompt. The following prompt appears:
Pick first point or enter distance:
8. Pick apoint at the coordinate 17'-0",9'-0". The next prompt appears:
Second point:

9. Pick a point at the coordinate 100-0",70'-0". The prompt displays the distance 103.0049 ft.

Thefirst line defines the function. The second line obtains the distance using the Getdist function.
74

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(setq dstl (getdist " Pick first point: "))

Thethird line uses the Rtos function to convert the distance value from areal to a string (see Chapter).
(setq dst1s(rtos (/ dst1 12.0) 2 4))

This conversion is necessary because we want to append the string "ft" to the numeric distance val ue obtained from
getdist. The fourth line enters areturn to the prompt line. The last line combines the string distance value with the
string "ft.".

(terpri)
(strcat dstls™ ft")

AutoL ISP will return the value of the last expression evaluated so the result of combining the distance with "ft" is
displayed on the command prompt. The result value could be assigned to a variable for further processing asin the
following line:

(setq dist2s (decft))

In this simple expression, the final value returned by Decft is assigned to the variable Dist2s.

How to Get Angle Values

When you are manipulating drawings with AutoL I SP, you will eventually need to obtain angular information.
AutoL ISP provides the Getangle and Getorient functions for this purpose. These functions determine angles based
on point input. This means that two point values are required before these functions will complete their execution.
Getangle and Getorient will accept keyboard input of relative or absolute coordinates or cursor input to allow angle
selection from the graphic screen. Getangle and Getorient always return angles in radians, regardless of the current
AutoCAD Units settings. So even if you are using Architectural units, Getangle and Getorient will return a distance
inradians (see chapter for a discussion of radian to degree conversion).

Using Getangle and Getorient

The difference between Getangle and Getorient is that Getangle will return an angle value relative to the current
Unit setting for the 0 angle while Getorient will return an angle based on the "standard" 0 angle setting. For
example, the default or "standard" orientation for O degrees is a direction from left to right but you can use the Units
command or the Angbase or Angdir system variables to make O degrees a vertical direction. If adrawing is set up
with O degrees being a direction from bottom to top, Getangle will return a value relative to this orientation while
Getorient will return avalue based on the "standard" orientation regardless of the Units, Angbase, or Angdir
settings. Figure 4.3 illustrates these differences.

75

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
DO

Positive direction
AutoCAal's default

angle format settings
are shown by this figure.

a0°

Positive direction The angle format can be

changed from the default
using the Units command.
This figure shows one

ane of marty possible
angle formats.

Getarient = 1.22173 = 70°

If a drawing is set up with the
nonstandard angle fornat shown
ahove, and Getangle is used to
ohtain the angle shown at left,
the value 593412 would be
retumed. If Getorentis

used to find the same angle,
1.22173 would be retumed.

s0°

Getangle = 593412 = 340°
Figure 4.3: Comparing Getorient and Getangle

NOTE THAT Getorient ignores the angle direction setting. Even though the hypothetical setting uses a clockwise
direction for the positive angle direction, getorient still returns angles using the counter-clockwise direction for
positive angle.

The syntax for Getangle and Getorient are:

(getangle [optional point value] [optional prompt string])

(getorient [optional point value] [optional prompt string])

76

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Y ou can optionally supply one or two arguments to these functions. These arguments can be either string values
which will be used as prompts to user when the program is run, or point values indicating a position from which to
measure the angle.

Getangle and getorient accept three methods of input. These methods are similar to those offered by getdist. In the
first method, you can enter two points.

1. Enter the following:
(setq angl (getangle " Pick a point or enter angle: "))

2. Pick apoint at coordinate 3,3. A rubberbanding line appears from the picked point and you get the
prompt:

Second point:

3. Pick another point at coordinate 6,6. The angle obtained from getangle is then assigned to the variable
angl.

4. Find the value of angl by entering the following:
langl
If the value returned by angl looks unfamiliar, it is because it isin radians. Radians are a way of describing an
angle based on a circle whose radius is one unit. Such acircle will have a circumference of 2 pi. An angle of 90
degrees would describe a distance along the circle equivalent to 1/4 of the circles circumference or pi/2 or 1.5708

(seefigure 4.4). This distance is the radian eguivalent of the angle 90 degrees. We will discuss radians and their
conversion to degreesin more detail in the next chapter.

90° = 15708 radians

114 of the
circumference
is equal to
1.5708 units.
180° = 0°
7 radians

2707 =4 71239 radians

77

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Figure 4.4: 90 degrees described in radians

Just as with getdist, if apoint is selected using a cursor, you are prompted for a second point and a rubberbanding
line appears. The rubberbanding line allows you to visually see the angle you are displaying in the drawing area. The
second method isto enter an angle from the keyboard.

1. Enter the same expression you did previoudly:
(setq angl (getangle " Pick a point or enter angle: "))
2. Enter the following:
<45
The angle of 45 degreesis applied to the variable angl in radians.
3. Enter the following to find the value of Angl:
langl
The value 0.785398 is returned. Thisisthe radian equivalent of 45 degrees.
Just as with getdist, you can supply a point variable as an argument to getangle.
1. Enter the following expression:
(setq pt1'(33))
This assigns the coordinate 3,3 to the variable pt1.
2. Enter the expression:
(setq angl (getangle ptl " Indicate angle: "))
A rubber-banding line appears from the coordinate 3,3.
3. Pick apoint at coordinate 7,6. The angle from ptl to 7,6 is assigned to angl.
4. To display the value of angl, enter:
langl

The value 0.6463501 is returned. Thisisthe radian equivalent to 37 degrees.

By accepting both keyboard and cursor input, these two functions offer flexibility to the user. Angles can be

78

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

specified as exact numeric values or visually using the cursor. The Rotate command worksin asimilar way by
accepting angular input as well as alowing the user to visually select an angle of rotation. Figure 4.5 summarizes the
three ways you can use Getanglel

'-':D Picking two points using the cursor L]

{getangle "Pick a point using cursor, ™)

AutoCAD prompt; B
Pick a point using cursor. Second point:
1.05194
@ Entering an angle through the keyboard il g
{getangle "Enter angle fraom keyboard: ") g?

AutoCAD prompt:
Enter angle from kevboard: <45
0.785395

@ Using a pre-defined coordinate for reference e m

[setg pt1 (33N
{getangle ptl “Indicate angle: ")

(3 3)

AutoCAD prompt:
Indicate angle:
1.05184

Figure 4.5: Three methods Getangle accepts for input

79

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
How to Get Text | nput

Y ou can prompt the user for text input using the Getstring and Getkword functions. These two functions always
return String variables even if anumber is entered as a response. Though both Getstring and Getkword are used for
obtaining String values, They operate in dightly ways. Getstring will accept almost anything as input so it can be
used to acquire words or sentences of up to 132 characters long with no particular restriction to content. Getkword,
however, is designed to work in conjunction with the Initget function, (described in detail later in this chapter), to
accept only specific strings, or keywords, asinput. If the user triesto enter a string to Getkword that is not a
predetermined keyword, the user is asked to try again.

Using Getstring
The syntax for Getstring is:

(getstring [optional variable or number] [optional prompt string])

Y ou can optionally supply one or two arguments to Getstring. Y ou can supply a string value for a prompt to the
user or you can also supply a non-nil variable or number, to signify that Getstring is to accept spacesin the user
input. For example, in many AutoCAD commands, pressing the space bar on your keyboard is the same as pressing
the return key. Normally, Getstring will also read a space bar as a return thus disallowing more than a single word to
be input to the Getstring function. Enter the following expression:

(setq strl (getstring " Enter aword: "))
the following prompt appears:
Enter aword:

Try entering your first and last name. As soon as you press the space bar, the getstring function and the command
prompt returns read your first name. Display the value of strl by entering:

Istrl
Since the space bar isread asareturn, onceit is pressed, the entered string is read and AutoL1SP goes on to other
business. If you provide non-nil variable or number argument, however, getstring will read a space bar input as
spaces in atext string thereby allowing the user to enter whole sentences or phrases rather than just single words.
Enter the following:

(setq str2 (getstring T " Enter a sentence: "))
The following prompt appears:

Enter a sentence:
Try entering your first and last name again. This time you are able to complete your name. Display the value of str2
by entering:

80

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Istr2

Aninteger or real value or anything that will not evaluate to nil could replace the T argument in the above example.

We would like to restate that you can enter numbers in response to Getstring but they will be treated as strings
therefore, you won't be able to apply math functions to them. Y ou can, however, convert a number that isa string
variable typeinto areal or integer type using the Atof, Atoi and Ascii functions (see Chapter 7 for details).

Using Getkword
The syntax for Getkword is:

(getkword [options prompt string])

Getkword offers only one argument option, the string prompt. Unlike most other functions, Getkword must be used
in conjunction with the Initget function. Initget is used to restrict the user by allowing only certain values for input.
If adisallowed value is entered, the user is prompted to try again. In the case of Getkword, Initget allows you to
specify special words that you expect as input. The most common example of this situation would be the Y es/No
prompt. For example, you may want to have your program perform one function or another based on the user
entering a'Yesor No to a prompt. Enter the following:

(initget " YesNo")

(setq strl (getkword " Areyou sure? <YesNo>: "))
The following prompt appears:

Areyou sure? <Yes/No>:

If the user does not enter aYes, Y, No or N, Getkword will continue to prompt the user until one of the keywordsis
entered. Try entering MAY BE. Y ou get the message:

Invalid option keyword.
Areyou sure? <Yes/No>:

Now try entering Y. Getkword acceptsthe Y asavalid keyword and the whole keyword Y es is assigned to the
variable strl. If you had entered n or N for No, then the entire keyword No would have been assigned to strl.

The words Yes and No are first established as keywords using the initget function. Getkword then issues the prompt
and waits for the proper keyword to be entered. If capital letters are used in the Initget function's string argument,
they too become keywords. Thisiswhy Y isalso allowed as keyword in the above example (see Initget for more
details). It doesn't matter if you enter acapital or lower case Y. It only matters that you enter the letter that is
capitalized in the Initget string argument.

81

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
How to Get Numeric Values

At times, you may want to prompt the user for a numeric value such asasize in decimal units or the number of

times afunctionsisto be performed. Getreal and Getint are the functions you would use to obtain numeric input.

Using Getreal and Getint

Getreal always returns reals and Getint always returns integer values. The syntax for Getint is:

(getint [optional prompt string])

The syntax for Getredl is:

(getreal [optional prompt string])

Getreal and getint can be supplied an optional argument in the form of a prompt string. Just as with all the previous
get functions, this prompt string is displayed as a prompt when an expression using getreal or getint is eval uated.

How to Control User I nput

Y ou can add some additional control to the Get functions described in this chapter by using the Initget function. In
version 2.6 of AutoCAD, Initget was only used to provide keywords for the Getkword function (see Getkword
earlier in this chapter). With Version 9, other functions are added to give more control over input to the other Get
functions. For example, with Initget, you can force a Get function not to accept zero or negative values. Unlike most
functions, Initget always returns nil.

Using Initget

The syntax for Initget is:

(initget [optional bit code] [optional string input list])

Y ou must supply at least one argument to initget. The bit code option controls the kinds of input that are restricted,
or, in some cases, how rubber-banding lines or windows are displayed. Table 4.1 lists the bit codes and their
meaning.

82

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

CODE MEANING

1 null input not allowed

2 zero values not allowed

4 negative values not allowed

8 do not check limits for point values

16 return 3D point rather than 2D point

32 Use dashed lines for rubber-banding lines and windows

Table 4.1: The Initget bit codes and what they mean

Bit codes can be used individually or added together to affect several options at once. For example, if you do not
want a Get function to accept null, zero and negative values for input, you can use the following:

(initget 7)

(setq intl (getint " Enter an integer: "))

In this example, though there isno formal 7 bit code value, for initget, 7 is 1 plus 2 plus 4 so the restrictions
associated with bit codes 1, 2, and 4 are applied to the Getint that follows. Y ou can also write the Initget expression
above as:

(initget (+124))

Not all initget bit codes are applicable to all Get functions. Table 4.2 shows which code works with which Get
function.

83

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

FUNCTION can be used with initget bit code:
getint 124

getreal 1,24

getdist 1,2,4,16,32

getangle 1,2,32

getorient 1,2,32

getpoint 1,8,16,32

getcorner 1,8,16,32

getkword 1

getstring no initget codes honored

Table 4.2: The Bit codes and related Get functions

Prompting for Dissimilar Variable Types

The Initget functions allows Get functions to accept string input even though a Get function may expect datain
another format. For example, you may want your function to accept either a point or string value from a prompt. To
do this you might have the following expressions:

(initget 1" Next")

(setq ptl (getpoint " Next/<pick a point>: "))

In this example, the user will see:

Next/<pick a point>:

Initget sets up the word Next as a keyword. Once thisis done, The Getpoint function in the following expressionis
allowed to accept either a point value or the string "next" or "n". Note that the user need not enter his or her response
specifically in upper or lower case |etters.

84

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Using Multiple Keywords

Y ou can have more than one keyword for situations where multiple choices are offered. For example, you might
have a situation where the user is asked to choose from several fonts as in the following expressions:

(initget " Roman Gothicg Scripts')
(setq strl (getkword " Font style = Roman/Gothicg/Scripts. "))
The user will see the following prompt when the expressions are read:
Font style = Roman/Gothicg/Scripts:
In this case, the user can enter one of the three keywords listed in the prompt or their capital letters.

Capitalization isimportant in specifying the keyword as initget will allow both the whole word and the capitalize
letters of aword to be used as keywords.

(initget " Style STeak STROKE")
(setq kword (getkword " Style/Steak/STROKE: "))

In the above example, the user can either enter Sfor style, ST for string or STROKE for stroke. Initget expects the
input keyword to be as long as the capitalized portion of the keyword definition. Therefor, to enter the Style option,
the user only needsto enter s since that is capitalized portion of the keyword. For the Steak option, the user must
enter at least the ST portion of the word, once again, because the ST is capitalized in the argument. Finally, the user
must enter the entire word Stroke to select that keyword sinceit isall capitalized in the argument.

Another way to specify keywordsisto capitalize all the characters of the word then follow it with acomma and the
abbreviation asin the following:

(initget " STYLE,S STEAK,ST STROKE")

This sample has the same affect as the previous example.

How to Select Groups of Objects

AutoCAD provides the Select command to allow you to pre-select a group of objects to be edited in some way.
Select acts the same way as other commands when the Select object prompt is presented. For example, when you
issue the Move command, you are prompted to Select objects. Y ou can then use any number of optionsto select
groups of objects to move. These options range from windows to single object selection or de-selection. The group
of objectsyou select is called a selection set.

AutoL ISP offersasimilar facility in the Ssget function. Y ou can think of ssget as an abbreviation for selection set

85

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

get. When this function is used as part of an expression, the Select objects prompt appears and you can go about
selecting asingle object or groups of objects to be processed by your program in much the same way as the standard
select objects prompt.

Using Ssget
The syntax for Ssget is:

(ssget [optional selection mode][optional point][optional point])

Three optional arguments affect the way ssget selects objects. the first option, selection mode, allows you to
predetermine the method ssget uses for selection. For example, if you want the user to use a window to select
objects, you would include the string "W" as the first argument to ssget asin the following:

(setq obj 1 (ssget " W"))

Other options are:
" P" select a previous selection set
"L" select thelast object added to database
" C" select objectsusing a crossing window
" X" select objectsusing afilter list.

Most of these options should be familiar to you as standard selection options. The " X" mode however is probably
new to you. This mode allows you to select objects based on their properties such as layer, linetype color and so on.
We won't discuss this option until later in thisbook asit israther involved.

Y ou can also specify points either to select objects at a known location or asinput to the window or crossing mode
options. For example, if you want to select an object you know is at point 1,1, you can place the following in your
program:

(setq obj1 (ssget (1 1))
Y ou can aso indicate a window by indicating two point as in the following:
(setq obj1 (ssget "W" '(11) '(912)))

Point specification need not be in the form of a quoted list. Y ou can supply avariable as well. Suppose two points
have been previoudy defined in your program:

(setq ptl (getpoint " Pick a point: "))

(setq Pt2 (getcorner ptl" Pick another paint: "))

86

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The periodsin the sample above indicate other expressionsin your program Later in your program, Y ou can then
use those two point to select objects with a window:

(setq obj1 (ssget "W" ptl pt2))

If you provide points as arguments, however, ssget does not pause for user input. It assumes that the points provided
as arguments indicate the location of the objects to be included in the selection set.

Finally, if you do not provide any arguments, ssget will allow the user to select the mode of selection. If the
following appearsin your program:

(setq obj1 (ssget))
Ssget displays the prompt:
Select objects:

The user can either pick objects with asingle pick, or enter W or C to select a standard or crossing window. The use
can also use the Remove mode to de-select objects during the selection process. In fact, all the standard object
selection options are available. When the user is done, he or she can press return to confirm the selection.

We must caution you that AutoL ISP only allows you to have six selection set variables at any given time. This
shouldn't be a problem so long as you do not make your selection set variables global. Remember that avariableis
made global by not including its symbol in the functions argument list.

A Sample Program Using Ssget

Figure 4.8 shows two AutoL | SP programs. The first one called Group uses the ssget function to store a set of objects
as agroup. Thisprogram is similar to the Select AutoCAD command only Group allows the user to give that
grouping a name so that it can be recalled any time during the current editing session. Also, with the Group program
in earlier versions of AutoCAD, you can only store up to 6 sets of groups. After 6, any group you try to store will
return nil. The groups saved by the Group program are not saved when you exit the file however.

87

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun collct ()

(if (not gpl)(setq gpl (getstring "enter name of group: ")))
(if (<= *gpcnt 4)(setq *gplst (cons gpl *gplst)))

(set (read gpl) (ssget))

)

(defun C. Goup (/ gpl)

(if (not *gpcnt)(setq *gpcnt 0))
(setqg *gpcnt (1+ *gpcnt))

(if (<= *gpcnt 4)(collct)(freegp))
(princ)

)

(defun FREEGP ()
(pronpt "\ nYou have exceeded the nunber of groups allowed: ")
(pronmpt "\ nEnter group name to re-use ")

(princ *gplst)

(setqg gpl (getstring ": "))
(set (read gpl) nil)

(gc)

(collct)

)

Figure 4.8: Examples of Ssget

The second program called Freegp will free up memory taken by a group so that if exceed 6 selection sets, you can
remove one or more selection sets from memory to allow the use of the Group function again. It is up to you,

however, to remember the names of your groups.

1. Exit the Chapt4 file and open an AutoL ISP file called Group.lsp. Copy the program shown in figure 4.4

into the file.
2. Go back to your Chapt4 AutoCAD drawing file and load Group.lsp.
3. Draw eight vertical linesin the drawing area.

4. Enter Group at the command prompt. The following prompt appears:

88

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Enter name of group:
5. Enter the following for a group name;
groupl

6. The Select objects prompt appears. pick the leftmost three lines. Y ou can use a window or pick them
individually. Once you are done selecting objects, press return. Y ou will see a message similar to the
following:

<Selection set: n>
Command:
The value of n will depend on the number of selection sets previoudly used in the current editing session.
7. Start the move command. At the Select objects prompt, enter the name of the group you selected previously:
Igroupl

The objects you picked using the Group function are highlighted just asif you had picked them manually while
in the move command.

The Group program works by first prompting you for a name to give your group:
(setq gpl (getstring " enter name of group: "))

This nameis saved as avariable gpl. Next, it uses ssget to assign a selection set to a variable with the name
you entered during the previous expression.

(set (read gp1) (ssget))

Thisisaccomplished using the set and read functions. Read is a function that reduces a string to a symbol. When the
variable gpl is applied to read, the string, "groupl" which you entered in the previous expression, is returned as the
variable name or symbol groupl. The set function then applies the selection set from the ssget function to the
symbol groupl. You may recall that set works just like setq only set will evaluate both its arguments. Since set
evaluates itsfirst argument, you can use an expression such as (read gpl) to derive avariable name.

Since the variable created using set and read is created while the program is executing, it cannot be included in the
argument list of the program. For this reason it becomes global variable.

As mentioned earlier, AutoL ISP allows up to 6 selection setsto be available at once. If you try to create more than 6,
ssget will return nil instead of a selection set. Any program that uses the ssget function will not work properly once
the maximum number of concurrent selection setsis exceeded. To recover the use of ssget, you must set at least one
of the selection set variables to nil then perform what is called a " garbage collection” using the GC function. Thisis
precisely what the Freegp program does.

89

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

1 Enter Freegp at the command prompt. At the prompt:
Enter name of group to delete:

2. Enter groupl.
Freegp will set groupl to nil and recover any node space groupl may have take.
Freegp uses an AutoL ISP function called gc. To help understand what gc does, think of nodes, portions of memory
used to store AutoL ISP symbols and values, are of two types, Bound and Free. Bound nodes are those that are being
used to store symbols and value. Free nodes are unassigned. When anew symbol is created, it is assigned afree
node. That node is then bound to that symbol. Even if a symbol is eventualy assigned a nil value, it will still be
bound to a node. Gc, short for garbage collection, releases node space that is bound to a symbol with anil value.

Frequent use of Gc is not recommended, as it can be time consuming. In the case of the ssget function however, itis
the only function that will allow you to recover memory and regain ssget's use.

Conclusion

In this chapter, you were introduced to the many ways AutoL ISP allows you to interact with the user to gather
information. In summary, the following points were discussed:

¢ Severa functions allow you to pause your program to allow the user to input data.

* Many of these functions accept data either from the keyboard or from the cursor

* You can place controls on the type of data being input through the initget function.
In addition, you saw how objects can be selected using the Ssget function. Though there are only a handful of
functions that give AutoL ISP its interactive capabilities, the flexibility of these functions give a complete range of

possibilities for gathering data from the user.

In the next chapter, you will explore how you can make your program do more of your work for you by making
decisions and performing repetitive tasks.

90

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 5: Making Decisions with AutoLISP

Introduction
Using the Cond Function

Making decisions
How to repeat parts of a program

How to test for conditions

Using the While Function

Using the If function

Using the Repeat Function

How to make several expressions act like one

Using Test expressions

How to test Multiple Conditions

Conclusion

| ntroduction

Aswe mentioned in chapter 3, AutoL ISP is designed to help us solve problems. One of the key elements to problem

solving is the ability to perform one task or another based on some existing condition. We might think of this ability

as away for aprogram to make decisions. Another element of problem solving is repetitive computation. Something
that might be repetitive, tedious, and time consuming for the user to do may be done quickly using AutoLISP. In this
chapter, we will ook at these two facilitiesin AutoL|SP.

Making Decisions

Y ou can use AutoL ISP to create macros which are like a predetermined sequence of commands and responses. A
macro building facility alone would be quite useful but still limited. Unlike macros, AutoL1SP offers the ability to
perform optional activities depending on some condition. AutoL1SP offers two conditional functions that allow you
to build-in some decision making capabilities into your programs. These are the if and cond functions. If and cond
work in very similar ways with some important differences.

How to Test for Conditions

Theif functions works by first testing to see if a condition is met then it performs one option or another depending
on the outcome of the test. This sequence of operationsis often referred to as an if-then-el se conditional statement.
if acondition is met, then perform computation A, else perform computation B. Aswith all elsein AutoLISP, the if
function is used asthe first element of an expression. It is followed by an expression that provides the test. A second

91

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

and optional third argument follows the test expression. The second argument is an expressions that isto be
evaluated if the test conditionistrue. If the test returns false or nil, then if evaluates the third argument if it exists,
otherwise if returns nil. The following shows the general syntax of theif function.

(if (test expression)

(expression) (optional expression)

)

The test expression can be use any function but often you will use two classes of functions called predicates and
logical operators. Predicates and logical operators are functions that return either true or false. Since these functions
don't return a value the way most functions do, the atom T is used by predicates and logical operators to represents a
non-nil or true value. There are several functions that return either aT or nil when evaluated.

FUNCTION RETURNST (TRUE) IF...

Predicates

< anumeric value isless than another

> anumeric valueis greater than another

<= anumeric valueisless than or equal to another
>= anumeric valueis greater than or equal to another

= two numeric or string values are equal

/= two numeric or string values are not equal
eq two values are one in the same

equal two expressions evaluate to the same value
atom an object is an atom (as opposed to alist)
boundp asymbol has a value bound to it

listp anobjectisalist

minusp anumeric valueis negative

numberp an object isanumber, real or integer

zerop an object evaluates to zero

Table 5.1 Alist of AutoLISP predicates and logical operators.

92

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Logical Operators

and all of several expressions or atoms return non-nil
not asymbol isnil

null alistisnil

or one of several expressions or atoms return non-nil

Table 5.1 (continuet) Alist of AutoLISP predicates and logical operators.

Y ou may notice that several of the predicates end with a p. The p denotes the term predicate. Also note that we use
the term object in the table. When we say object, we mean any lists or atoms which include symbols and numbers.
Numeric values can be numbers or symbols that are bound to numbers.

All predicates and logical operators follow the standard format for AutoL1SP expressions. They are the first element
in an expression followed by the arguments as in the following example:

(>24)

The greater than predicate compares two numbers to see if the one on the left is greater than the one on the right.
The value of this expression is nil since two is not greater than four.

The predicates >,<,>=, <= al allows more than two arguments as in the following:
(>2158)

When more than two arguments are used, > will return T only if each valueis greater than the one to isright. The
above expression returns nil since 1 is not greater than 5.

The functions and, not, null and or are similar to predicates in that they too return T or nil. But these functions,
called logical operators, are most often used to test predicates (see table 5.1). For example, you could test to seeif a
value is greater than another:

(setqvalll)
(zerop vall)
nil
93

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

We set the variable val1 to 1 then test to seeif vall is equal to zero. The zerop predicate returns nil. But suppose you
want to get atrue response whenever val 1 does not equal zero. Y ou could use the not logical operator to "reverse”
the result of zerop:

(setqvalll)
(not (zerop vall))
T

Since not returns true when its argument returns nil, the end result of the test is T. Not and null can also be used as
predicates to test atoms and lists.

Using the If function

In chapter 2, you saw briefly how the if function worked with the not logical operator to determine whether to load a
program or not. Looking at that expression again (see Figure 5.1), you see atypical use of theif function.

(if (not C:BOX) (load "box")(princ "Box is already loaded."))
| | 1 | |
[[

!

If the expression (not C:BOX)
returns T for true, then evaluate
the second expression.

If the expression (not C:EOX)
returns nil, then evaluate the
third expression.

Figure 5.1: An expression showing the syntax for the If function

Thisfunction teststo seeif the function C:BOX exists. If C:BOX doesn't exist, it isloaded. This simple program
decides to load a program based on whether the program has already been loaded. The test function in thiscaseis
not. Letslook at how you might apply if to another situation. In the following exercise, you will add an expression
to decide between drawing a 2 dimensional or 3 dimensional box.

94

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

1. Open the Box1.Ispfile.
2. Change thefirst line of the Box program so it reads as follows:
(defun BOX1 (/ ptl pt2 pt3 pt4)

By removing the C: from the function name, Box1 now becomes a function that can be called from another
function.

3. Change thefirst line of the 3dbox program so it reads as follows:
(defun 3DBOX (/ ptl pt2 pt3 pt4)

4. Add the program listed in boldface print in figure 5.2 to the end of the Box1.Isp file. Y our Box1.Isp file
should look like figure 5.2. Y ou may want to print out Box1.Isp and check it against the figure.

5. Save and Exit Box1.lsp.

6. Open an AutoCAD file called chapt5. Be sure to use the = suffix with the file name.

7. Load the box1.Isp file.

8. Run the Mainbox program by entering mainbox at the command prompt. Y ou will see the following prompt:
Do you want a 3D box <Y =yes/Return=no>?

9. Enter y. The 3dbox function executes.

95

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun getinfo ()

(setqg ptl (getpoint "Pick first corner: "))
(princ "Pick opposite corner: ")

(setqg pt3 (rxy))

)

(defun procinfo ()

(setq pt2 (list (car pt3) (cadr ptl)))
(setq pt4 (list (car ptl) (cadr pt3)))
)

(defun output ()
(command "line" ptl pt2 pt3 pt4 "c")
)

(defun BOX1 (/ ptl pt2 pt3 pt4)
(getinfo)

(proci nfo)

(out put)

(defun 3DBOX (/ ptl pt2 pt3 pt4d h)

(getinfo)

(setg h (getreal "Enter height of box: "))

(procinfo)

(out put)

(command "change" "L" "" "P" "th" h ""
"3df ace" ptl pt2 pt3 pt4 ""
"3dface" ".xy" ptl h ".xy" pt2 h
".xy" pt3 h ".xy" pt4d h""

)

)

(defun C. 3DWEDGE (/ ptl pt2 pt3 pt4 h)

(getinfo)

(setg h (getreal "Enter height of wedge: "))

(proci nfo)

(out put)

(command "3dface" ptl pt4 ".xy" pt4 h ".xy" ptl h pt2 pt3 ""
"3dface" ptl pt2 ".xy" ptl h pt1l ""
“copy" "L" "" ptl pt4

)

)
(defun C MAI NBOX ()

(setqg choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))
(if (or (equal choose "y")(equal choose "Y"))(3dbox) (box1))

Figure 5.2;: The BOX1.LSP file with C: MAINBOX added.

96

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In this example, you first turned the programs C:BOX1 and C:3DBOX into functions by removing the C: from their
names. Next, you created a control program called C:MAINBOX that prompts the user to choose between a 2
dimensional or 3 dimensional box. Thefirst linein the C:MAINBOX program, as usual, gives the program its name
and determines the local variables. The next line uses the Getstring function to obtain a string value in response to a
prompt:

(setq choose (getstring " \nDo you want a 3D box <Y =yesReturn=no>? "))

The prompt asks the user if he or she wants a 3 dimensional box and offers the user two options, Y for yes or Return
for no. The third line uses the if function to determine whether to run the BOX1 or 3DBOX function. Notice that the
or and the equal predicates are used together.

(if (or (equal choose"y")(equal choose" Y"))(3dbox)(box1))

The or function returns T if any of its arguments returns anything other than nil. Two arguments are provided to or.
One test to see of the variable choose is equal to the lower case y while the other checksto see if choose is equal to
an upper casey. If the value of either expressionis T, then or returns T. So, if the user responds by entering either an
upper or lower case y to the prompt in the second line, then the or predicate returns T. Any other value for choose
will result in anil value from or (seefigure 5.3).

(if (or (equal choose "y') (equal choose "Y")) (3dbox) (box1))

v —_—
(Ior T niI)I W

If Choose = 'y"
* then evaluate 3dbox

| |

(if (or {equal choose "y"') (equal choose "Y")) (3dbox) (box1))
L ‘ * 11 * [T]

(or nil T) If Choose = "

L * | then evaluate 3dbox

T |

(if (or (equal choose "y') (equal choose "Y")) (3dbox) (box1))
L I 1 |
L ¢ +
(or nil nil) If Choose does not
|

1 equal "y" or "Y"
* then evaluate Eox1

nil |

Figure 5.3: Using the logical operator Or

97

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Once the or function returnsa T, the second argument is evaluated which means that a 3dbox is drawn. If or returns
nil, then the third argument is evaluated drawing a 2 dimensional box. The and function worksin asimilar way to
or but and requiresthat all its arguments return non-nil before it returns T. Both or and will accept more that two
arguments.

How to Make Several Expressions Act like One

There will be times when you will want severa expressions to be evaluated depending on the results of a predicate.
As an example, lets assume that you have decided to make the 2 dimensional and 3 dimensional box programs part
of the C:MAINBOX program to save memory. Y ou could place the code for these functions directly in the
C:MAINBOX program and have afile that looks like figure 5.5. When this program is run, it acts exactly the same
way asin the previous exercise. But in figure 5.4, the functions BOX 1 and 3DBOX are incorporated into the if
expression as arguments.

(defun C. MAINBOX (/ ptl pt2 pt3 pt4 h choose)
(setqg choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))
(if (or (equal choose "y")(equal choose "Y"))

(progn ;if choose = Y or y then draw a 3D
box
(getinfo)
(setg h (getreal "Enter height of box: "))
(proci nfo)
(out put)
(conmand "change" "Last" "" "Properties" "thickness" h ""
"3dface" ptl pt2 pt3 pt4 ""
"3dface" ".xy" ptl h ".xy" pt2 h
".xy" pt3 h ".xy" pt4 h""
); end conmand
); end progn
(progn ;if choose /=Y or y then draw a 2D box
(getinfo)
(proci nfo)
(out put)
); end progn
);end if

); end MAI NBOX

Figure 5.4: The C;Mainbox program incorporating the code from Box1 and 3dbox

98

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

fdefun BOX1 (f pt1 pt2 pt3 ptd)
Egetmfﬂ
[
]

{defun 3DBOE (F pt1 pf? pt3 ptd k)

[yetinfo)

(setg h (getreal "Enter height of box: "))

procinfa)

outpuf)

[command "change” "Last" ™ "Properties” "thickness" h ™
"Jdface” pt1 pt2 pt3 ptd ™
“Fdface” "uy" ptl h "y pt2 h

“ay"ptd h My ptd b

defun C:MAINBOE (7 ptl Igt2 pt3 ptd h choose)
sety choose (getstring "nDo you want 2 30 box <Y=yesReturn=no>? ")
(if {or (equal choose "y"(equal choose "Y™)
(progn
[etinfo)
%setq h (getreal "Enter height of box ")
prucinfu%
[output)
icommand "change” "Last" "" "Properies” "thickness" h ™[
"Jdface” ptT ptZ pt3 pt4 ™"
"Idface” "ay" pt1 h "y pt2 h
"ay ptah "xy" ptd b
J.end command
J.end progn
(progn

{getinfo)
(procinfa)
[output)

Jend progh
1end if

Figure 5.5: Using the progn function

We are able to do this using the progn function. Progn allows you to have several expression where only oneis
expected. Its syntax is as follows:

(progn
(expressionl) (expression?) (expression3) . . .

)

99

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Figure 5.5 shows how we arrived at the program in figure 5.4. The calls to functions BOX1 and 3DBOX were
replaced by the actual expressions used in those functions.

How to Test Multiple Conditions

There is aso another function that acts very much like the if function called Cond. Arguments to cond consists of
one or more expressions that have as their first element a test expression followed by an object that isto be
evaluated if the test returns T. Cond evaluates each test until it comes to one that returns T. It then evaluates the
expression or atom associated with that test. If other test expressions follow, they are ignored.

Using the Cond function

The syntax for cond is:
(cond

((test_expression)[expr ession/atom][expr ession/atom]...)

((test_expression)[expr ession/atom][expr ession/atom]...)

((test_expression)[expr ession/atom][expr ession/atom]...)

((test_expression)[expr ession/atom][expr ession/atom]...)

)

Figure 5.6 shows the cond function used in place of theif function. Cond's syntax also allows for more than one
expression for each test expression. This means that you don't have to use the Progn function with cond if you want
several expressions evaluated as aresult of atest.

(defun C MAI NBOX (/ choose)
(setqg choose (getstring "\nDo you want a 3D box <Y=yes/Return=no>? "))
(cond
((or (equal choose "y") (equal choose "Y")) (3dbox))
((or (/= choose "y") (/= choose "Y")) (box1))

Figure 5.6: Using cond in place of if

100

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Figure 5.7 shows another program called Chaos that uses the Cond function. Chaosisan AutoLISP version of a
mathematical game used to demonstrate the creation of fractals through an iterated function. The game works by
following the steps shown in Figure 5.8.

;function to find the m dpoint between two points
(defun md (a b)

(list (/ (+ (car a)(car b)) 2)

(/ (+ (cadr a)(cadr b)) 2)

)

;function to generate random nunber

(defun rand (pt / rns rleng lastrn)

(setg rns (rtos (* (car pt)(cadr pt)(getvar "tdusrtiner"))))
(setqg rnleng (strlen rns))

(setqg lastrn (substr rns rnleng 1))

(setg rn (* 0.6 (atof lastrn)))

(fix rn)

)

; The Chaos gane
(defun C.CHACS (/ pta ptb ptc rn count |astpt randn key)
(setg pta '(2.0000 1)) ;define point a
(setq ptb '(7.1962 10)) ;define point b
(setqg ptc '(12.3923 1)) ;define point c
(setqg lastpt (getpoint "Pick a start point:")) ;pick a point to start
(while (/= key 3) ;while pick button not pushed
(setqg randn (rand lastpt)) ;get random nunber
(cond ;find mdpoint to a b or c

((=randn 0)(setq lastpt (md lastpt pta))) ;use corner aif O
((=randn 1)(setq lastpt (md lastpt pta))) ;use corner aif 1
((=randn 2)(setq lastpt (md lastpt pth))) ;use corner b if 2
((=randn 3)(setq lastpt (md lastpt ptb))) ;use corner b if 3
((=randn 4)(setq lastpt (md lastpt ptc))) ;use corner c if 4
((=randn 5)(setq lastpt (md lastpt ptc))) ;use corner c if 5

);end cond
(grdraw |l astpt lastpt 5) ;draw m dpoi nt
(setq key (car (grread T))) ;test for pick
);end while
); end Chaos

Figure 5.7: The Chaos game program

101

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Cond can be used anywhere you would use if. For example:

(if (not C:BOX) (load "box") (princ " Box isalready loaded. "))

can be written:
(cond

((not C:BOX) (load " box"))

((not (not C:BOX)) (princ " Box isalready loaded. "))

)

182 286

Figure 5.8: How to play the Chaos game

Define three points and
assign each point two
numbers fram 1 t0 Bin
a clockwise direction.

Pick a point at randam
in the vicinity of the
three points.

Roll a die to get a
number from 1 to 6.

Place a paoint half
way hetween the last
point and the point
corresponding to the
numhber on the die.

Repeatthe above steps
for as many times as
you can, each time using
the last midpoint found
as the reference point
from which to getthe
next midpaint.

102

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Cond is actually the primary conditional function of AutoLISP. Theif function is offered as an alternative to cond
sinceit issimilar to conditional functions used in other programming languages. Since the If function syntax is
simpler and often more readable, you may want to use if where the special features of cond are not required.

How to Repeat parts of a Program

Another useful aspect to programs such as AutoL ISP is their ability to perform repetitive tasks. For example,
suppose you want to be able to record a series of keyboard entries as a macro. One way to do thiswould beto use a
series of Getstring functions as in the following:

(Setq strl (getstring "\nEnter macro: "))
(Setq str2 (getstring " \nEnter macro: "))
(Setq str3 (getstring " \nEnter macro: "))

(Setq str4 (getstring " \nEnter macro: "))

Each of the str variables would then be combined to form a variable storing the keystrokes. Unfortunately, this
method is inflexible. It requires that the user input a fixed number of entries, no more and no less. Also, this method
would use memory storing each keyboard entry as a single variable.

It would be better if you had some facility to continually read keyboard input regardless of how few or how many
different keyboard entries are supplied. The While function can be used to repeat a prompt and obtain data from the
user until some test condition is met. The program in figure 5.9 is a keyboard macro program that uses the while
function.

;Programto create keyboard nacros -- Macro.lsp

(defun C: MACRO (/ strl nmacro macnane)

(setqg nacro ' (commuand)) ;start list with command
(setg nmacnhanme (getstring "\nEnter nanme of macro: ")) ;get nane of macro
(while (/= str1 "/") ;do while strl not eq.
(setqg strl (getstring "\nEnter nmacro or / to exit: ")) ;get keystrokes
(if (=str1 /")
(princ "\'nEnd of nacro ") ;if [then print message

(Setq macro (append macro (list strl)) ;else append keystrokes
) ;end if nmacro |ist
);end while
(eval (list 'defun (read macnane) ' () nacro)) ;create function
); end macro

Figure 5.9: A programto create keyboard macros

103

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Using the While Function

The syntax for whileis:
(while (test_expression)
(expression 1)(expression 2)(expression 3)
)

The first argument to while is atest expression. Any number of expressions can follow. These following expressions
are evaluated if the test returns anon-nil value.

Open an AutoL ISP file called Macro.lsp and copy the contents of figure 5.8 into this file. Since thisis alarger
program file than you worked with previously, you may want to make a print out of it and check your print out
against figure 5.8 to make sure you haven't made any transcription errors. Go back to your AutoCAD Chapt5 file.
Now you will use the macro program to create a keyboard macro that changes the last object drawn to alayer called
hidden. Do the following:

1. Draw adiagonal line from the lower left corner of the drawing area to the upper right corner.
2. Load the Macro.lsp file
3. Enter Macro at the command prompt.
4. At the following prompt:
Enter name of macro:
5. Enter the word chlt. At the prompt:

Enter macro or / to exit:

6. Enter the word CHANGE.
The Enter macro prompt appears again. Enter the following series of words at each Enter macro prompt:

Enter macro or / to exit: L
Enter macro or / to exit: [pressreturn|
Enter macro or / to exit: P

Enter macroor /toexit: LT
104

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Enter macro or / toexit: HIDDEN

Enter macro or / to exit: [pressreturn|

Enter macro or / to exit: /

Thisiswhere the while function takes action. As you enter each response to the Enter macro prompt, while test to
seeif you entered aforward dash. If not, it eval uates the expressions included as its arguments. Once you enter the
backdash, while stopsiits repetition. Y ou get the prompt:

End of macro CLAYER

The input you gave to the Enter macro prompt is exactly what you would enter if you had used the change command
normally. Now run your macro by entering:

chit

The line you drew changes to the hidden line type.

When Macro starts, it first defines two variables def and macro.
(setq def "defun ")
(setq macro '(command))

Def isastring variable that is used later to define the macro. Macro is the beginning of alist variable which is used
to store the keystrokes of the macro. The next line prompts the user to enter a name for the macro.

(setqg macname (getstring " \nEnter name of macro: "))
The entered name is then stored with the variable macname. Finally, we come to the while function.
(while (/=str1"/")

The while expression is broken into several lines. Thefirst line contains the actual while function along with the test
expression. In this case, the test compares the variable strl with the string "/" to seeif they are not equal. So long as
strlisnot equal to /", while will execute the arguments that follow the test. The next four lines are the expressions
to be evaluated. Thefirst of these lines prompts the user to enter the text that compose the macro.

(setq strl (getstring " \nEnter macro or / to exit: "))

When the user enters avalue at this prompt, it is assigned to the variable strl. The next line uses an if function to test
if strlisequal to"/".

(f (=tr1" /)

If thetest resultsin T, the next line prints the string End of macro.

105

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(princ "\nEnd of macro")

This expression prints the prompt End of macro to the prompt line. If the test resultsin nil, the following line
appends the value of strl to the existing list macro.

(Setq macro (append macro (list strl1)))

The append function takes one list and appends its contents to the end of ancther list. In this case, whatever is
entered at the Enter macro prompt is appended to the variable macro. Each time a new valueis entered at the Enter
macro prompt, it is appended to the variable macro creating alist of keyboard entries to be saved (see figure 5.10).

The While iteration: The AutoCAD Prompt:

Command: macro

{setg strl { getstring "nEnter macroor/ to exit:" 1)

Enter name of macro: chit
—

{setg macro {append macro (list stel)0

Enter macro or / to exit: change
|

{setg macro (append (command) {"change”)1
L 1

Enter macro or /to exit: L I

{ setg macro { command"change" 33

— Enter macro or /to exit: {—l
|

(getg strl { getstring "nEnter macroorf to ext: " 1)

rEr e

{setg macro{append macro { list =tri 3))

{setqg macro{append { cormmand " change” 3 ("L 30
L 1

|

(et rmEcro { cornrmand " change" "L)

(setg =trl { getstring "nEnter macro or § to exit: " 1)

f

(getg rnacro (append macro list strl1)0

{setg rnacro Cappend © command " change" "L 3 (™10
L 1

!

{sety macro { command” change" "L"™)

: PP } (CDmmand "change" ||L|| nn ||p|| ||It|| "hidden" u)

Figure 5.10: Appending liststo other lists

The next two lines close the if and while expressions. Note that comments are used to help make the program easier
to understand.

106

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
);end if
);end while

The last line combines all the elements of the program into an expression that, when evaluated, creates a new macro
program.

(eval (list (read def) (read macname) '() macr o))

)

Figure 5.11 shows gives breakdown of how this last line works.

(defun C:MACRO (/ strl macro machame)

{setq macno {command))

— (setq macname (getsting "nEnter name of macro: ")
{while {/= str1 ")

The While function
nenerates the variable
macro.

feval [list 'defun (read macname) ') macro))

The wariables and

EXpressions are
evaluated ..

(eval [list 'defun (read "chit') () macro))

Read converts the
string "chit"
into a synbaol

I

1
{ewval [list 'defun chit {) [command "change" "L" " "p" "It" "hidden" "™ 11)
| |

List combines the
Elemerts ..

{ewval [defun chit () { command“change" "L "™ 0" "It" "hidden"™)0)
| |

to form a new functon.

(defun chit () (command "thange" "L" ™ "' "It" "hidden® ™)}

Figure 5.11: How the macro is defined

Theread function used in this expression is a special function that converts a string value into a symbol. If astring
argument to read contains spaces, read will convert the first part of the string and ignore everything after the space.

107

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The while expression does not always include prompts for user input. Figure 5.12 shows a simple program that
inserts a sequence of numbersin increasing value. Each number isincreased by one and they are spaces 0.5 units
apart. The user is prompted for a starting point and a first and last number. Once the user inputs this information, the
program cal culates the number to be inserted, inserts the number using the text command, cal culates the next
number and so on until the last number is reached.

;Programto draw sequential numbers -- Seq.lsp
(defun C. SEQ (/ ptl currnt |ast)

(setqg ptl (getpoint "\nPick start point: "))
(setqg currnt (getint "\nEnter first nunber: "))
(setq last (getint "\nEnter |ast nunber: "))

(command "text" ptl "" "" currnt) ;wite first nunber
(while (< currnt |ast) ;while not | ast nunber
(setqg currnt (1+ currnt)) ;get next numnber
(command "text" "@5<0" "" "" currnt) ;wite value of currnt
);end while
);end seq

Figure 5.12: Sequential number program

This program expects the current text style to have a height of 0.

Using the Repeat Function

Another function that performs recursions is the repeat function. Repeat worksin a similar way to While but instead
of using a predicate to determine whether to evaluate its arguments, repeat uses an integer value to determine the
number of times to perform an evaluation. The syntax for repeat is:

(repeat [n]
(expression 1)(expression 2) (expression 3) ...

)

The n aboveisan integer or a symbols representing an integer.

108

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The program in Figure 5.13 shows the sequential humber program using repeat instead of while. When run, this
program appears to the user to act in the same way as the program that uses while.

;Programto wite sequential nunbers using Repeat
(defun C. SEQ (/ ptl currnt |ast)

(setqg ptl (getpoint "\nPick start point: "))
(setqg currnt (getint "\nEnter first nunber: "))
(setqg last (getint "\nEnter |ast nunber: "))

(command "text" ptl "" "" currnt) ;wite first nunber
(repeat (- last currnt) ;repeat last - currnt tinmes
(setqg currnt (1+ currnt)) ;add 1 to currnt
(command "text" "@5<0" "" "" currnt) ;write value of currnt
);end repeat
);end seq

Figure 5.13: Sequential number programusing repeat

Using Test Expressions

So far, we have shown you functions that perform evaluations based on the result of some test. In all the examples,
we use predicates and logical operators for testing values. While predicates and logical operators are most
commonly used for tests, you are not strictly limited to these functions. Any expression that can evaluate to nil can
also be used as atest expression. Since virtually all expressions are capable of returning nil, you can use amost any
expression as atest expression. The following function demonstrates this point:

(defun MDIST (/ dstlst dst)

(setq dstlst '(+ 0))

(while (setq dst (getdist "\nPick distance or Return to exit: "))
(Setq dstlst (append dstlst (list dst)))

(princ (Eval dstlst))

);end while

);end MDIST

109

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

This function gives the user arunning tally of distances. The user is prompted to pick a distance or press Return to
exit. if apoint is picked, the user is prompted for a second point. The distance between these two pointsis displayed
on the prompt. The Pick distance prompt appears again and if the user picks another pair of points, the second
distance is added to the first and the total distanceis displayed. This continues until the user presses return. The
following discussion examines how this function works.

Asusual, thefirst line defines the function. The second line creates a variable called dstlst and givesit thelist value
(+0).

(defun MDIST (/ dstlst dst)
(setq dstlst '(+ 0))

The next line begins the while portion of the program. Instead of a predicate test, however, this expression uses a
setg function.

(while (setq dst (getdist "\nPick point or Return to exit: "))

Aslong as points are being picked, getdist returns a non-nil value to setq and while repeats the evaluation of its
arguments. When the user presses return, getdist returns nil and while quits evaluating its arguments. We see that
whileisreally only concerned with nil and non-nil since the test expression in this example returns a value other
thanT.

The next few lines append the current distance to the list dstlst then evaluates the list to obtain atotal:
(Setq dstlst (append dstlst (list dst)))
(princ (eval dstlst))

The function princ prints the value obtained from (eval dstlst) to the prompt (see Figure 5.14).

;Programto neasure non-sequential distances -- Mlist.|sp
(Defun C. MDI ST (/ dstlst dst)
(setqg dstlst '(+)) ;create list with plus

cwhile a return is not entered ...
(while (setq dst (getdist "\nPick point or Return to exit: "))

(Setq dstlst (append dstlst (list dst))) ; append di stance val ue
(princ (Eval dstlst)) ;print value of list
);end while
); end ndi st

Figure 5.14: The Mdist function

110

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Conclusion

Y ou have been introduced to several of the most useful functions available in AutoL1SP. Y ou can now begin to
create functions and programs that will perform time consuming, repetitive tasks quickly and easily. Y ou can aso
build-in some intelligence to your programs by using decision making functions. Y ou may want to try your hand at
modifying the programs in this chapter. For example, you could try to modify the Mdist function to save the total
distance as a global variable you can later recall.

In the next chapter, you will get a brief refresher course in geometry.

111

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 6: Working With Geometry

Introduction

How to Find Angles and Distances

Understanding the Angle, Distance, and Polar Function

Using Trigonometry to Solve a Problem

Gathering Information

Finding Points Using Trigonometry

Conclusion

| ntroduction

It isinevitable that your work with AutoL ISP will involve some geometric manipulations. With the box programin
chapter 2, you have already created a program that derives new point locations based on user input. There, you
learned how to take coordinate lists apart, then re-assemble them to produce a new coordinate. In this chapter, you
will beintroduced to other AutoL ISP functions that will help you determine locations in your drawings coordinate
system and in the process, you will review some basic trigonometry.

How to find Angles and Distances

In chapter 4, you learned how to prompt the user for angles and distances. At time, however, you will want to find
angles and distances based on the location of existing point variables rather than relying on user input every time
you need to find an angle.

Suppose you want to find a way to break two parallel lines between two points in a manner similar to the standard
AutoCAD break command. In addition, you would like this function to join the ends of the two broken portions of
each line to form an opening. Figure 6.1 shows a drawing of the process along with a description of what must
occur. This drawing can be developed into pseudocode for your program. A function similar to thisis commonly
used in architectural drawings to place an opening in awall.

112

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Distance m

frector)

i

:—'—'-''-'_'-F+
d-ﬂ-*'ﬂ-+

- =

s el o e aid et i
id & pUiinit iridi is

m
o
o
Lo
F
b
"
=

— orocr

21

the secand point to find
the fourth point.

Break the lines hetween
the points.

Draw lines between
opposite pointsto
close the opening.

Figure 6.1: Sketch of the parallél line break program

In Chapter 3, we discussed the importance of designing your program to be smpleto u

113

Copyright © 2001 George Omura,,World rights reserved

se. This program is designed

The ABC’s of AutoL ISP by George Omura

to obtain the information needed to perform its task using the minimum of user input. Since it is similar to the break
command, it also triesto mimic the break program to some degree so the user feels comfortable with it. As you read
through this section, pay specia attention to the way information is gathered and used to accomplish the final result.

Open an AutoL ISP file called Break2.lsp and copy the program in figure 6.2. Open a new AutoCAD file called
Chapt6. Draw aline from point 2,4 to 12,4 then offset that line a distance of 0.25 units. Y our screen should look like
figure 6.3.

;Programto break 2 parallel lines -- Break2.|sp
(defun c:break2 (/ ptl pt2 pt3 pt4 ptO angl dst1l)
(setvar "osnode" 512) ;near osnap node
(setqg ptl (getpoint "\nSelect object: ")) ;get first break point
(setq pt2 (getpoint ptl "\nEnter second point: ")) ;get second break point
(setvar "osnpde" 128) ; perpend osnap node
(Setqg pt3 (getpoint ptl "\nSelect parallel line: "));get 2nd |line
(Setvar "osnode" 0) ;N0 osnap node
(setqg angl (angle ptl pt3)) ;find angle btwn |ines
(setq dstl (distance ptl pt3)) ;find dist. btwn lines
(setqg pt4 (polar pt2 angl dstl)) ;derive pt4 on 2nd line
(command
"break" ptl pt2 ; break 1st |ine
"break" pt3 pt4 ;break 2nd Iine
"line" ptl pt3 "" ;close ends of I|ines
"line" pt2 pt4 ""

Figure 6.2: The parallel line break program

114

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Command: redraw
Command: redraw

Command;

Figure 6.3: Two parallel lines drawn

1. Load the Break2.Isp file and enter break?2 at the Command prompt.
2. At the prompt:

Select object:
The osnap cursor appears. Pick the lowermost line near coordinate 5,4.
3. At the next prompt:

Enter second point:
Pick the lowermost line again near coordinate 10,4.
4. Finally, at the prompt:

Select paralldl line:

115

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

pick the upper line near its midpoint. The two line break and are joined at their break points to form an opening
(seefigure 6.4)

" To point:
Command: nil
Command:

Figure 6.4: The lines after using Break?2

Now draw severa parallel lines at different orientations and try the Break2 program on each pair of lines. Break2
places an opening in apair of parallel linesregardless of their orientation. Let's ook at how break2 accomplishes
this.

Understanding the Angle, Distance, and Polar Functions

Thefirst line after defun function uses the setvar function to set the osnap system variable to the nearest mode.

(defun C:BREAK 2 (/ ptl pt2 pt3 pt4 pt0 angl dst1)

116

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(setvar " osmode" 512)

This ensures that the point the user picks at the next prompt is exactly on the line. It also give the user avisual cueto
pick something since the osnap cursor appears.

When setvar is used with the osmode system variable, a numeric code must also be supplied. This code determines
the osnap mode to be used. Table 6.1 shows alist of the codes and their meaning.

Code Equivalent Osnap mode
1 Endpoint

2 Midpoint

4 Center

3 Node

16 Quadrant

32 Intersection
64 Insertion
128 Perpendicular
256 Tangent

512 Nearest
1024 Quick

Table 6.1: Osmode codes and their meaning
The next line prompts the user to select an object using the getpoint function:
(setq ptl (getpoint "\nSelect object: "))

Here, the variable ptl is used to store the first point location for the break. Since the nearest osnap mode is used, the
osnap cursor appears and the point picked falls exactly on the line (see Figure 6.5).

117

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

\

L

Select objact by

\— (setvar "osmode" 512)
This expression tumns on the Mearest
Osnap mode in preparation for the
NExt EXpression.

(setq pt1 (getpoint "nSelect object: "))
This expression finds a point on the
line and assigns it to the variakle Pt1.

A5 a result of these two expressions,
the user simultaneously sees the
Mearest Osnap cursor and the "Select

ohject" prompt.

Figure 6.5: Getting a point using the "nearest" osnap mode.

Next, another prompt asks the user to pick another point:
(setq pt2 (getpoint ptl " \nEnter second point: "))

The variable pt2 is assigned a point location for the other end of the break. The next line:
(setvar " osmode" 128)

sets the osnap mode to perpendicular in preparation for the next prompt:

(Setq pt3 (getpoint ptl "\nSelect paralld line: "))

118

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Here, the user is asked to select the line parallel to the first line. The user can pick any point along the parallel line
and the perpendicular osnap mode ensures that the point picked on the parallel lineis"perpendicular” to the first
point stored by the variable pt1. The perpendicular osnap mode will only work, however, if a point argument is
supplied to the Getpoint function. In this case, the point ptl is supplied as a reference from which the perpendicular
location isto be found (see figure 6.6). This new point variable pt3 will be important in calculating the location of
the two break points on the parallel line.

Pt3
[|
T
b 1
Pt1 3?2

f \

Salect parallel ine: Y

(setvar "osmode" 128) A

This expression wurns an the
Perpendicular Osnap mode in
preparation for the next
EXpression.

(setq pt3 (getpoint pt1 "wnSelect parallel line: "))
This expression finds a point Pt3

on the parallel ling that forms a

perpendicular vector from the point PE1.

L— A5 aresult ofthese two expressions,
the user simultaneously sees the
Dshap cursor with a rubber-bhanding
line from Pt1 and the "Select parallel
line" promipt.

Figure 6.6: Picking the point perpendicular to the first point.

119

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The next line sets the osnap mode back to "none":
(Setvar " osmode" 0)

The next two lines find the angle and distance described by the two point variables pt1 and pt3.
(setq angl (angle ptl pt3))
(setq dst1 (distance pt1l pt3))

Y ou can obtain the angle described by two points using the Angle function. Angles syntax is:

(angle [coordinate list][coordinatelist])

The arguments to angle are aways coordinate lists. The lists can either be variables or quoted lists.

Anglereturnsavaluein radians. Y ou looked at radians briefly in chapter 4. A radian is system to measure angles
based on a circle of 1 unit radius. In such acircle, an angle can be described as a distance along the circle's
circumference. Y ou may recall from high school geometry that a circle's circumference is equal to 2 times pi times
itsradius. since the hypothetical circle has aradius of 1, we drop the one from the equation.

circumference = 2pi
90 degreesis equal to one quarter the circumference of the circle or pi/2 radians or 1.5708 (see figure 6.7). 180
degreesisequal to half the circumference of acircle or 1 pi radians or 3.14159. 360 degrees is equal the full
circumference of the circle or to 2 pi radians or 6.28319.
A simple formulato convert degreesto radiansis:

radians* 57.2958
To convert degreesto radians the formulais:

degrees* 0.0174533

Angle uses the current UCS orientation asits basis for determining angles. Though you can supply 3 dimensional
point values to angle, the angle returned is based on a 2 dimensional projection of those points on the current UCS
(seefigure 6.7). Finally, radians are always measured with a counterclockwise directions being positive.

120

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

90° = 1.5708 radians

_— 14 ofthe

g circumference
Is equal to
1.5708 units.
The positive
direction is

0° always counter-
clockwise.

180° =
T radians

270° =4 71239 radians

Figure 6.7: Degrees and radians

The distance function is similar to angle in that it requires two point lists for arguments:

(distance [coordinate list][coordinate list])

The value returned by distance isin drawing units regardless of the current unit style setting. This means that if you
have the units set to Architectural, distance will return distances in one inch units.

By storing the angle and distance val ues between pt1 and pt3, the program can now determine the location of the
second break point on the paralel line. Thisis done by applying this angle and distance information to the second
break point of the first line using the following expression:

(setq pt4 (polar pt2 angl dstl))

Here the angle variable angl and the distance variable dst1 are used as arguments to the polar function to find a
point pt4. Polar returns a point value (see figure 6.8).

121

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Pta Pt
+ +
/'{H_L - D5t {“_L
JI.—'E,,[1 [
Pt
Ang

l (setq ang? (angle pt1 pta)
This expression finds the angle
fram Pt1 to Pt3 and assigns the
valle to the variable Ang1.

(setq dst1 (distance pt1 ptay)

This expression finds the distance
between Pt1 and Pt3 and assigns
the walue to the wardable Dst1.

(setq pt4 (polar pt2 ang1 dstin
This expression finds a point Pt
tey using the Polar function to
apply the angle Ang1 and
distance Dst1 to the point P2,

Figure 6.8: Using the polar function to find a new point.

122

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
The syntax for polar is:

(polar [point value][anglein radians]|[distance])

Polar is used to find relative point locations. It requires a point value as its first argument followed by an angle and
distance value. The new point value is calculated by applying the angle and distance to the point value supplied.
Thisissimilar to describing arelative location in AutoCAD using the at sign. For example, to describe arelative
location of .25 units at 90 degrees from the last point entered you would enter the following in AutoCAD:

@.25<90

The same relative location would look like the following using the polar function:
(setq ptl (getvar "lastpoint™))
(polar ptl 1.5708 .25)

Thefirst expression in this example uses the getvar function to obtain the last point selected. Setq then assigns that
point to the variable pt1. Polar isused in the next lineto find a point that is 1.5708 radians (45 degrees) and 2 units
away from the lastpoint.

The last several lines of the Break2 program use al the point variables to first break the two lines then draw the
joining lines between them.

(command
"break" ptlpt2
"break" pt3ptd
"line" ptlpt3""
"ling" pt2pt4""
)

)

In the Break2 program, you could have used the getdist and getangle functions but to do so would mean including an
additional prompt. By using the combination of the perpend osnap mode along with the getpoint function, you
establishes a point value from which both the angle and distance value is derived. In general, if you know that you
will need to gather both distance and angle information, it is better to establish coordinate variables first then derive
angles and distances from those coordinates using the distance and angle functions.

Using Trigonometry to Solve a Problem

The Break2 function isrelatively ssimple as far as its manipulation of datais concerned. But at times, you will need
to enlist the aid of some basic trigonometric functions to solve problems. Suppose you want a function that will cut a

123

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

circle along an axis defined by the user. Figure 6.9 shows a sketch along with a written description of a program that
doesthis.

Get a point on the circle Find the short side of
by using the "nearest” the right triangle
oshap mode. that is described by

known points and angles.

Find an axis describing —— Find the intersection of
the cut points on the the cut axis and the
circle circle from the geometry

of @ second trhiangle.

Find the center point Erase the old circle and
and radius of the circle. draw two arcs using
the newly found intersection
points and the circle's
radius.

Figure 6.9: Sketch of circle cutting program.

This program makes use of the Pythagorean Theorem as well as the Sine trigonometric function as you will seein
the next section.
Gathering Information

Before a problem can be solved, you must first gather all the known factors affecting the problem. The program you
will explore next will give an example of how you might go about your information gathering.

Exit AutoCAD and open an AutoL ISP file called Cutcr.Isp. Carefully copy the program in figure 6.10 into thisfile.
Save and exit the Cutcr.Isp file then start AutoCAD and open the Chapt6 file again. Load the Ctcr.Isp fine then do
the following:

1. Erase everything on the screen then draw acircle with its center at point 8,6 and a with aradius of 3 units
(seefigure 6.11).

2. Enter cutcr at the command prompt to start the C:CUTCR program.

124

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
3 At the prompt:
Pick circleto cut:
pick the circle you just drew.
4. At the next prompt:
Pick first point of cut line:
pick a point at coordinate 5,9.
5. At the prompt:
Pick second point:
pick a point at coordinate 8,2.
Thecircleis cut into two arcs along the axis represented by the two points you picked (see figure6.12).

6. Use the erase command to erase the left half of the circle. Y ou can now see that the circle has been cut
(seefigure 6.13).

;Programto cut a circle into two arcs -- Cutcr.lsp
(defun C. CUTCR (/ cptl Iptl Ipt2 cent radl angl
dst1l dst2 cord ang2 wkpt cpt2 cpt3)

(setvar "osnode" 512) ;0snap to nearest
(setqg cptl (getpoint "\nPick circle to cut: ")) ;find point on circle
(setvar "osnode" 0) ;0shap to none
(setqg Iptl (getpoint "\nPick first point of cut line: ")) ;1st point of cut
(setq I pt2 (getpoint Iptl "\nPick second point: ")) ;2nd point of cut
(setqg cent (osnap cptl "center")) ;find center pt
(setqg radl (distance cptl cent)) ;find radius of circle
(setqg angl (- (angle Iptl cent)(angle Iptl Ipt2))) ;find difference of angles
(setq dstl (distance Iptl cent)) ;find dist.Iptl to cent
(setqg dst2 (* dstl (sin angl))) ;find side of triangle
(setqg cord (sqgrt(-(* radl radl)(* dst2 dst2)))) ;find half cord
(setqg ang2 (- (angle Iptl Ipt2) 1.57)) ; find perpend angl e
(setg wkpt (polar cent ang2 dst2)) ; find workpoi nt
(setqg cpt2 (polar wkpt (angle Iptl Ipt2) cord)) ;find first intersect
(setqg cpt3 (polar wkpt (angle Ipt2 Iptl) cord)) ;find second intersect
(comand "erase" cptl "" ;erase circle
"arc" "c" cent cpt2 cpt3 ;draw first circle seg
"arc" "c" cent cpt3 cpt2 ;draw second circle seg
) :close conmand funct.
) ;cl ose defun

Figure 6.10: Thecircle cut program

125

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Command: CIRCLE 3P/2P/TTR/<Center point=: 0,6
DCiameter/<Radius=:
Command:

Figure 6.11: The circle drawn in AutoCAD

"Pick circle 1o cul.
pick first point of cut line: <snap on=
Pick second point: <Coords on=

Figure 6.12: Drawing the cut axis.
126

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Select objects: 1 selected, 1 found
Select objects
Command;

Figure 6.13: Erasing one part of the circle after it has been cut.

The first three expressionsin the program after the defun functions and its arguments obtain a point on the circle:
(setvar " osmode" 512)
(setq cptl (getpoint "\nPick circleto cut: "))
(setvar " osmode" 0)

The setvar function sets osnap to the nearest mode then the user is prompted to pick the circle to cut. This point is
stored as cptl. The osnap mode ensures that the point picked is exactly on the circle. Later, this point will be used to
both erase the circle and to find the circles center. The next function sets osnap back to none.

The next two lines prompt the user to select the points that define the axis along which the circleisto be cut:
(setq Iptl (getpoint "\npick first point of cut line: "))
(setq Ipt2 (getpoint Iptl "\nPick second poaint: "))

The getpoint function is used in both these expressions to obtain the endpoints of the cut axis. These endpoints are
stored as Iptl and Ipt2.

The next expression uses a new function called osnap:

127

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(setq cent (osnap cptl " center"))

Here the point picked previously as the point on the circle cptl is used in conjunction with the osnap function to
obtain the center point of the circle. The syntax for osnap is:

(osnap [point value][osnap mode])

The osnap function acts in the same way as the osnap overrides. If you use the center osnap override and pick a
point on the circle, you get the center of the circle. Likewise, the osnap function takes a point value and applies an
osnap modeto it to obtain a point. In this case, osnap applies the center override to the point cptl which islocated
on the circle. This gives us the center of the circle which is assigned to the symbol cent.

The next expression obtains the circle's radius
(setq radl (distance cptl cent))

The distance function is used to get the distance from cpt1, the point located on the circle, to cent, the center of the
circle. Thisvalue is assigned to the symbol radl.

Finding Points Using Trigonometry

At this point, we have all the known points we can obtain without utilizing some math. ultimately, we want to find
the intersection point between the circle and the cut axis. By using the basic trigonometric functions, we can derive
the relationship between the sides of triangle. In particular, we want to look for triangles that contain right angles. If
we analyze the known elements to our problem, we can see that two triangles can be used to find one intersection on
the circle (See figure 6.14)

Intersection — !
point equals

one corner

of a triangle.

The properties of two

right triangles can be
found using the information
we hawe on the circle and
the cut axis.

Figure 6.14: Triangles used to find the intersection
128

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In our analysis, we see that we can find a point along the cut axis that describes the corner of aright triangle. To find
this point, we only need an angle and the length of the hypotenuse of the triangle. We can then apply one of the
basi c trigonometric functions shown in figure 6.15 to our problem.

opposite side
hypotenuse

cosine (angle) = “punotenuse

opposite side
adjacent side

sine (angle) =

hypotenuse
opposite side

angle a0°

tangentiangle) =

adjacent side

Figure 6.15: Basic trigonometric functions

The sine function is the best match to information we have.
sine(angle) = opposite side/ hypotenuse

Thisformula has to be modified using some basic algebra to suite our needs:
opposite side = hypotenuse * sine (angle)

Before we can use the sine function, we need to find the angle formed by points Ipt1, Ipt2 and cent (see figure 6.16).

|pt2

Figure 6.16: Angle needed to before the sine function can be used.

129

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The following function does this for us:
(setg angl (- (angleIptl cent) (angle Iptl Ipt2)))

Thefirst of these three functions finds the angle described by points Ipt1 and Ipt1. The second expression finds the
angle from Ipt1 to the center of the circle. The third line finds the difference between these two anglesto give usthe
angle of the triangle we need (see figure 6.17).

(- fangle lpt1 cent) (angle lpt1 1pt2))

lpt2

Figure 6.17: The sine expression written to accommodate the known elements.

We also need the length of the hypotenuse of the triangle. this can be gotten by finding the distance between Iptl
and the center of the triangle:

(setq dst1 (distance Ipt1 cent))

The length of the hypotenuse is saved as the variable dst1. We can now apply our angle and hypotenuse to the
formula:

opposite side = hypotenuse * sine (angle) becomes
(setq dst2 (* dstl (sin angl)))

Now we have the length of the side of the triangle but we need to know the direction of that side in order to find the
corner point of the triangle. We aready know that the direction is at aright angle to the cut axis. therefore, we can
determine the right angle to the cut axis by adding the cut axis angle to 1.57 radians (90 degrees)(see figure 6.18).
The following expression does this for us:

(setqg ang?2 (- (angle Iptl Ipt2) 1.57))
130

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

90° = 1.57 radians /

These angles are the same.
(setq ang2 (- (angle [pt1 1pt2) 1.57))

Ipt2

Figure 6.18: Finding the angle of the opposite side of the triangle.

We are now able to place the missing corner of the triangle using the polar function (see figure 6.19).

(setq wkpt (polar cent ang2 dst2))

Angle = ang?2, distance = dst? \
[

(setg whkpt (polar cent ang?2 dst2))

Figure 6.19: Finding the workpoint wkpt.

131

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

We assign the corner point location to the variable wkpt. We're still not finished with our little math exercise,
however. We still need to find the intersection of the cut axisto the circle. Looking at our problem solving sketch,
we can see that yet another triangle can be used to solve our problem. We know that the intersection lies along the
cut axis. We can describe a triangle whose corner is defined by the intersection of the circle and the cut axis (see
figure 6.20).

rad

Axis and circle intersection "4

N\

Mew triangle -

Figure 6.20: The triangle describing one intersection point.

We also already know two of the sides of this new triangle. One isthe radius of the circle stored as the variable radl.
The other isthe side of the triangle we used earlier stored as the variable dst2. The most direct way to find the
intersection isto apply the Pythagorean Theorem shown in figure 6.21.

a’ = b’ + ¢?

90°

Figure 6.21: The Pythagorean Theorem

132

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Again we must apply algebrato derive aformulato suite our needs. The formula:
cc=a’-b?

becomes the expression:
(setq cord (sgrt(-(* radl radl)(* dst2 dst2))))

We assign the distance value gotten from the Pythagorean Theorem to the variable cord. Using the Polar function,
we can now find one intersection point between the circle and the cut axis:

(setq cpt2 (polar wkpt (angle Ipt2 Iptl) cord))

In this expression, we find one intersection by applying the angle described by Iptl and |pt2 and the distance
described by cord to the polar functions (see figure 6.22).

racd1

(setq cord (sqrt (- (* rad’1 rad1) (" dst2 dst2))))

Figure 6.22: Finding the location of an intersection point.

133

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Since the two intersection points are symmetric about point wkpt, the second intersection point is found by
reversing the direction of the angle in previous expression:

(setq cpt3 (polar wkpt (angleIptl Ipt2) cord))
Finally, we can get AutoCAD to do the actual work of cutting the circle:
(command "erase" cptl""

arc' "c" cent cpt2 cpt3

arc' "c" cent cpt3 cpt2

)

)

Actually, we don't really cut the circle. Instead, the circle is erased entirely and replaced with two arcs (see figure
6.23).

{command "erase" cpt1™
The circle is erased ..
cpt

A

cpt2

"arc" "c" cent cpt2 cptd ———— -
"arc" "¢" cent cpt3 cpt2 7—\ + cent

and two arcs are drawn

inthe circle's place.

cpt3
Figure 6.23: Drawing the new circle.
134

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Functions Useful in Geometric Transformations

The mgority of your graphic problems can be solved with the basic trigonometric functons used in the Cutcr
program. But AutoL | SP provides the tools to solve even th emost arcane trigonometric problems. This section
shows the functions you are most likely to use in situations that require geometric manipulations.

Trans

Trans trandates a coordinate or displacement from one user coordinate system to another. The first argument is a
point of reference. The second argument is a code indicating which coordinate system the point is expressed in. The
third argument is a code indicating which coordinate system the point is to be translated to. An optional fourth
True/nil argument can be included. If this fourth argument evaluates to True or non-nil, then the first argument will
be treated as a displacement rather than a point value. The following are the codes for the second and third
arguments.

Code Coordinate System

0 World Coordinate System
1 Current User Coordinate System
2 Coordinate system of the current view plane

Trans returns a coordinate or displacement list.
The syntax for Transis

(trans[coordinage list] [UCS _code] [optional T/nil])

Atan

Atan returns the arctangent in radians of its first argument. If the argument is negative, then the
value returned will be negative. If two arguments are supplied, then Atan returns a the arctangent
of the first argument divided by the second argument.

The syntax for Atanis

(atan [number] [optional_2nd_number])

Inters

Inters returns a coordinate list of the intersection of two vectors. Thefirst two argumentsto inters
are the endpoints of one vector while the third and fourth arguments define the other vector. If an

135

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

optional fifth agrument is present and evaluates to nil, then Inters will attempt to locate an
intersection point of the two vectors regardless of whether the intersection falls between the
specified points or not.

The syntax for Intersis
(inters[point point point point] [optional _T/nil])
Sin
Sine returns the sine of an angle as areal number. The angle must be expressed in radians.
The syntax for Sineis

(sin [angle])

Cos

Cos returns the Cosine of an angle as areal number. The angle must be expressed in radians.
The syntax for Cosis

(cos[anglg])

Conclusion

The mgority of your graphic problems can be solved using the basic trigonometric functions shown in this sample
program. But AutoL ISP provides the tools to solve even the most arcane Trigonometric problems. If you find you
need to use these math trig functions, consider making liberal use of a sketch pad or for that matter, AutoCAD itself
to document your program. Y ou may want to re-use or modify programs such as the previous example and if you
don't have some graphic documentation recording how it works, you can have a difficult time understanding why
you wrote your program as you did.

136

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

137

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 7: Working with Text

Introduction

Working With String Data Types

Searching for strings

How to Convert Numbers to Strings and Back

Converting a Number to a String

Converting Other Data Types

How to Read ASCII Text Files

Using a File Import Program

Writing ASCII Filesto Disk

Using a Text Export Program

Conclusion

| ntroduction

If you have ever had to edit large amounts of text in a drawing, you have encountered one of AutoCAD's most
frustrating limitations. While AutoCAD's text handling capabilitiesis one of it's strong points, it still leaves much to
be desired where editing text is concerned. Fortunately AutoL I SP can be of great help where text is concerned. In
this chapter, you will ook at the many functions that AutoL|SP offersin the way of text or string manipulation. Y ou
will also look at how textural information can be store and retrieved from afile on disk and how data can be
converted to and from string data types.

Working With String Data Types

In earlier versions of AutoCAD, editing text was a tedious task. Y ou have to use the Change command to select a
text line, then press return several times before you can actually make changes to the text. Even then, you would
have to re-enter the entire line of text just to change one word. The text editing features of AutoCAD have come a
long way and it doesn't take the same painful effort it once did. The following program is a simple line editor which
simplifies the task of editing a single line of text. It was designed for the older versions of AutoCAD before the
Ddmodify and Ddedit commands were available. While its function may be a bit outdated, it will serve to
demonstrate how to handle text in AutoLISP.

138

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Searching for Strings

The program Chtxt shown in figure 7.1 isasimple line editor. It uses AutoL | SPs string handling functions to locate
a specific string, then it replaces that string with another one specified by the user.

Open afile called chtxt.Isp and copy the program shown in figure 7.1 into the file. Save and close this file and open
anew AutoCAD file called Chapt7.

;function to find text string fromtext entity------------cmoommmmn
(defun gettxt ()

(setvar "osnode" 64) ;set osnap to insert

(setqg ptl (getpoint "\nPick text to edit: ")) ;get point on text

(Setvar "osnode" 0) ;set osnap back to zero
(setqg ol dobj (entget (ssnanme (ssget ptl) 0))) ;get entity zero from prop.
(setqg txtstr (assoc 1 ol dobj)) ;get list containing string
(cdr txtstr) ;extract string from prop

)

;function to update text string of text entity-------------“--“--“----------
(defun revtxt ()

(setg newt xt (cons 1 newtxt)) ;create replacement propty.
(entnod (subst newtxt txtstr ol dobj)) ; updat e dat abase
)

;programto edit single line of text------------------------------------~-----
(defun C. CHTXT (/ count ol dstr newstr osleng otleng oldt oldl
ol d2 newt xt ptl ol dobj txtstr ol dtxt)

(setqg count 0) ;setup counter to zero
(setqg ol dtxt (gettxt)) ;get old string fromtext
(setqg otleng (strlen oldtxt)) ;find length of old string
(setq oldstr (getstring T "\nEnter old string ")) ;get string to change
(Setg newstr (getstring T "\nEnter new string ")) ;get replacenment string
(setq osleng (strlen oldstr)) ;find length of substring-
;while string to replace is not found, do... to be repl aced
(while (and (/= oldstr oldt)(<= count otleng))
(setqg count (1+ count)) ;add 1 to counter
(setqg ol dt (substr ol dtxt count osleng)) ;get substring to conpare

);end WHI LE
;if counting stops before end of old string is reached...
(if (<= count otleng)
(progn
(setq oldl (substr oldtxt 1 (1- count))) ;get 1st half of old string
(setqg ol d2 (substr oldtxt (+ count osleng) otleng));get 2nd hal f
(setq newt xt (strcat oldl newstr old2)) ;conbine to nake new string
(revtxt) ; updat e drawi ng
)
(princ "\'nNo matching string found.") ;else print nmessage
);end I F
(PRI NC)
) ; END C: EDTXT

Figure 7.1: The Chtxt.Isp file
139

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Load the Chtxt.Isp file and do the following steps:
1. Use the Dtext command and write the following line of text:
For want of a battle, the kingdom was lost.
2. Enter Chtxt
3. At the prompt:
Pick text to edit:
pick the text you just entered. Note that the osnap cursor appears.
4. At the next prompt:
Enter old string:
enter the word battle in lower case |etters.
5. At the next prompt:
Enter new string:
enter the word nail.
The text changes to read:
For want of a nail, the kingdom was lost.
Inthe C:CHTXT program, you are able to change a group of lettersin aline of text without having to enter entire
line over again. Also, you don't have to go through a series of unneeded prompts as you do with the change
command. The following describes what C:CHTXT goes through to accomplish this.
The C:CHTXT program starts out with a user defined function called gettxt.
(defun C:EDTXT (/ count oldstr newstr osleng otleng oldt old1
old2 newtxt ptl oldobj txtstr oldtxt)
(setq count 0)
(setq oldtxt (gettxt))

Gettxt prompts you to select the text to be edited. It then extracts from the drawing database the text string
associated with that text. The extracted text is assigned to the symbol oldtxt. We will ook at this extraction process
in Chapter--- but for now, think of the gettxt function as a function for getting text.

140

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In the next line of the Chtxt program, we see a new function strlen:
(setq otleng (strlen oldtxt))

Strlen finds the number of charactersin a string.

The syntax for strleniis:

(strlen [gtring or string variable])

Strlen returns an integer value representing the number of characters found in its arguments. Blank spaces are
counted as characters. In the above expression, the value found by strlen is assigned to the variable otleng.

The next two expressions obtain from the user the old portion of the text to be replace and the replacement text.
(setq oldstr (getstring T "\nEnter old string "))
(Setq newstr (getstring T "\nEnter new string "))

These two strings are saved as oldstr and newstr. Note that the T argument is used with getstring to alow the user to
use spaces in the string.

The next set of expressions do the work of the program. First, The number of characters of the string to be replaced,
oldstr, isfound by using the strlen function:

(setq osleng (strlen oldstr))

Thisvalueis stored with avariable called odeng. Osleng will be used to find exactly where in the line of text the old
string occursin the line of text being edited (see figure 7.2).

{setq osleng (stien oldstr))

(setq osleng (strlen "battle"))

{setq osleng 5])

Figure 7.2: Using the strlen function
The following while function uses osleng\ to find the exact location of oldstr within ol dtxt.
(while (and (/= oldstr oldt)(<= count otleng))
(setq count (1+ count))
(setq oldt (substr oldtxt count osleng))
);end WHILE
141

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
The while expression tests for two conditions. The first test is to see of the current string being read matches the
string entered at the " String to be changed” prompt. The second test checksto seeif the end of the text line has been
reached. The and logical operator is used to make sure that both test conditions are met before it continues
evaluating its other expressions.
We see a new function substr in this group of expressions:

(Setq oldt (substr oldtxt count osleng))
Substr extracts a sequence of characters from a string. Its syntax is:

(substr

[string or string variable]

[beginning of substring][end of substring]

)

The first argument to substr is the string within which a substring isto be extracted. By substring, we mean a group
of characters that are contained within the main string. The substring can be any contiguous sequence of characters
within the main string including the entire string itself. The second argument is the beginning location for the
substring. This can be an integer from 1 to the total number of characters in the main string. The third argument is
the ending location of the substring. This value is an integer greater than or equal to the value for the beginning of
the substring and it determines the ending location of the substring (see figure 7.3).

[setg olct { substr aldtkt count osleng))
: H [iy Symhbols evaluate to their values.

e
1| T > Substr uses its second argumert
7 to locate the beginning of a sub-
string. Its third argument

y y determines the length of the sub-
(setq olct Forwa" | string. In this example, the
beginning location is 1 and the
length is 6.

{setg oldt { substr "Forwant of a battle, the kingdom was lost."
|
11 |

(setq olct (substr oldxt count osleng))
| | | I
| I

{setg olct { substr "Forwant of a battle, the kingdom was lost."
|
21 |

L b0
L e

When the variahle Count increases
v by one, Substr advances to the
next set of characters in its
(setq olct 'or wan®) string argurnent and retims
the value "orwan".

Figure 7.3: Using the substr function
142

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The while expression extracts a group of characters from oldtxt starting at the beginning. It stores this substring in

the variable oldt. Oldt is then compared with oldstr to see if they match. If the don't match, then while advancesto

the next group of charactersin oldtxt and compares this new group to oldstr. This goes on until a match isfound or
the end of oldtxt isreached (Seefigure 7.4).

(while(and (/= oldstr oldt) (<= count otleng))

% '

"battle" ? ? 42

@ b g !

(setq count (1+count))

(setq oldt [substr oldbxt count osleng))

-

{setg oldt { substr "Forwant of a battle, the kingdom was lost."
|
171

3]

'
i

+5

{setq oldt "Farwa")

(setg count (1+ count))

{setq oldt { substr oldtxt count osleng))

3 T

{setq oldt [substr “"Forwant of a battle, the kingdom waslost" 2 B 3
15| a
+
[setq oldt "hattle”)

@ The While expression checks to see if the variable Oldt
is equal to the string "battle”. Ifthey are equal,
the While expression stops running.

@ The While expression also checks to see if the variable Count
is equal to the variable Otleng. If Count is greater than
Otleng, the While expression terminates.

@ The While expression continues to evaluate its set of
expressions until one ofthe conditions is met.

Figure 7.4: Using the while expression to find a matching string.

143

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

String data types are case sensitive, This meansthat if you had entered "BATTLE" instead of "battl€" at the string to
change prompt, you would have gotten the message:

No matching string found.

Thestring "BATTLE" is not equal to "battle" so as edtxt triesto find a string that matches"BATTLE", it never finds
it.

When the while expression is done, the next group of expressions takes the old text line apart and replaces the old
string with the new. First the if function is used to test whether the oldstring was indeed found.

(if (<= count otleng)

Theif expression checksto seeif the variable count is equal to or less than the length of the old text line. If count is
less than otleng, then the following set of expressions are eval uated:

(progn

(setq oldl (substr oldtxt 1 (1- count)))

(setq old2 (substr oldtxt (+ count osleng) otleng))
(setq newtxt (strcat old1 newstr old2))

(revtxt)

)

The progn function allows the group of expressions that follow to appear as one expression to theif function. The
first expression of this group:

(setq old1 (substr oldtxt 1 (1- count)))

separates out the first part of the old text line just before the old string. This is done using the substr function and the
count variable to find the beginning of the old string (see figure 7.5).

i(setq old1(substr oldbt 1 (1- count }))
| | | |

| ' *
(setq old1{ substr "Forwant of a battle, the kingdom was lost." 114)}
1= _ a
+14

(setqg oldi "Forwant of a ")

Figure 7.5: Finding the string before oldstr
144

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The next expression:
(setq old2 (substr oldtxt (+ count osleng) otleng))

separates out the last part of the old text line starting just after the old string. Again this is done using the substr
function and the count variable. Thistime, count is added to odeng to find the location of the end of the old string.
Otleng is used for the substring length. Even though its value is greater than the length of the substring w wan,
AutoL ISP will read the substring to the end of Oldtxt (see figure 7.6).

{setq old2 [substr oldxt (+ count osleng) otleng))
| |1 |1 |

[L *
{setg old2{ substr "Forwant of a battle, the kingdom was lost" 20 43))

90} —|d]
I " +43

f

(setg old? " the kingdom was lost.")

Figure 7.6: Finding the string after oldstr

Finally, the expression:
(setq newtxt (strcat old1 newstr old2))
combines the first and last part of the old text line with the new string to form the replacement text line (see figure

7.7).

{getq newtxt { strcat old1 newstr old2)

T L; |

(setq newtxt(strcat "Forwantofa" "naill" ", the kingdom was lost."))
[|

4

(getq newtxt "Forwant of a nail, the kingdom was lost")

Figure 7.7: Combining the old string with the new

The last expression in this group:

145

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(revtxt)
isauser defined function that does the work of replacing the old text with the new.
(defun revtxt ()
(setq newtxt (cons 1 newtxt))
(entmod (subst newtxt txtstr oldobj))
)
In the event that count is greater than otleng, the following expression is eval uated:
(princ "\nNo matching string found.")
);end IF
This expression prints the message:
No matching string found.
to the prompt line.
The very last expression of the program:
(PRINC)
);END C:EDTXT

seems pretty useless at first glance. Princ without any arguments prints a blank to the prompt line. If this expression
were not here, however, AutoL1SP would display the value of the last expression evaluated. Remember that

AutoL ISP constantly cycles through the read-eval uate-print loop. The generally, the value of the last expression
evaluated is printed to the prompt line. While this doesn't affect the workings of the program, it may prove to be an
annoyance to the user or it may confuse someone not familiar with the program. Since princ will print a blank at the
prompt line when no arguments are supplied, it is often used without arguments at the end of a program simply to
keep the appearance of the program clean. If you like, try deleting the Princ expression from the program and reload
and run the program again. Y ou will avalue will appear in the prompt line when C:EDTXT finishes running.

How to Convert Numbersto String and Back

There are times when it is necessary to convert a string val ue to a number or vice versa. Suppose, for example, that
you want to be able to control the spacing of numbers generated by the program in chapter 5. Y ou may recall that
this program creates a sequence of numbers equally spaced. The user is able to determine the beginning and ending
numbers and the location of the beginning number but cannot determine the distance between numbers. Y ou can use
the rtos function to help obtain a distance value and include it with the program. Figure 7.8 shows the C:SEQ
program from chapter 5 modified to accept distance input.

146

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun C.SEQ (/ ptl currnt |ast)
(setq ptl (getpoint "\nPick start point: "))
(setqg spc (getdist ptl "\nEnter nunber spacing: "))
(setqg currnt (getint "\nEnter first nunber: "))
(setqg | ast (getint "\nEnter |ast nunber: "))
(setqg stspc (rtos spc 2 2))
(setqg stspc (strcat "@ stspc "<0"))
(command "text" ptl "" "" currnt)
(repeat (- last currnt)
(setqg currnt (1+ currnt))
(command "text" stspc "" "" currnt)
)
)

Figure 7.8: The sequential number program

Converting a Number to a String

Exit AutoCAD and open the AutoL ISP file seq.lsp. Make the changes shown in bold face typein figure 7.10. Save
and exit the seq.lsp file and return to the file chapt7. Load the C:SEQ program and do the following:

1. Enter seq at the command prompt.
2. At the prompt:
Pick start point:
pick a point at coordinate 1,3.
3. At the prompt:
Enter spacing:
enter .5.
4. At the prompt:
Enter first number:

enter 4.

147

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

5. At the last prompt:

Enter last number:

enter 12.
The numbers 4 through 12 will appear beginning at your selected start point and spaced at 0.5 unit intervals.
The program starts by prompting the user to pick a starting point:

(defun C:SEQ (/ ptl pt2 currnt last)

(setq ptl (getpoint "\nPick start point: "))
A new prompt is added that obtains the spacing for the numbers:

(setq spc (getdist pt2 "\nEnter number spacing: "))

The spacing is saved as the symbol spc. The program continues by prompting the user to enter starting and ending
value:

(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))

Next, the function rtos is used to convert the value of spc to astring:
(setq stspc (rtos spe 2 2))

the syntax for rtosis:

(rtos[real or integer value][unit style code][precision])

The first argument to rtosis the number being converted. It can be areal or integer. The next argument is the unit
style code. Table shows alisting of these codes and their meaning.

Code Format

1 Scientific

2 Decimal

3 Feet and decimal inches
4 Feet and inches

5 Fractional units

148

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

This code determines the style the number will be converted to. For example, if you want a number to be converted
to feet and inches, you would use the code 4. The third argument, precision, determines to how many decimal places
to convert. In our example, we use the code 2 for unit style and 2 for the number of decimal placesto convert to a
string.

The next expression combines the converted number with the strings " @" and "<0" to form a string that can be used
in with the command function:

(setq stspc (strcat " @" stspc ' <0"))
The next two expressions set up the location of the beginning of the text:
(command "text" pt1"" "" currnt)

Thisis done because in the next set of expressions, The string that |ocates the text, " @distance<0", gives a distance
and direction rather than a point. The previous expressions locate a point which will cause the Text command in the
next expression to place the text in the proper place:

(repeat (- last currnt)
(setq currnt (1+ currnt))

(command " text" stspc

)
)

In the last three expressions, the repeat function is used to issue the text command, enter the number and advance to
the next number repeatedly until the last number isin place (see figure 7.9).

currnt)

{ command "text" stspc """ curmt)
{ command “text" "@5=0" """ 2)

AUtoCAD prompt:

Command, e

Start point or Align/Centen/FtMidde/Right/Style: -
Height<0.20>
Rotation angle =<0=;
Text:

Figure 7.9: Writing the numbers into the AutoCAD file

149

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Converting Other Data Types

Before we continue, we should briefly look at several other functions that offer data type conversion. These
functions arelisted in table .

Function Uses

angtos Convertsreal numbers (radians) into string values.
ascii Convertsastring into its ASCI| character code.
atoi Converts astring a string into an integer.

itoa Converts an integer to a string.

Converts an integer representing an ASCI I character code into a

chr string.

Angtos worksin asimilar way to rtos. It accepts a unit style code and a precision value. Its syntax is:

(angtos [angle valu€][unit style code][precision])

All of the other functions listed in table take a single item, the value to be converted, as their argument. For example,
to convert an integer into a string, you could use the following expression:

(itoa 55)
Theresulting value is"55".

The functions ascii and chr convert ASCII character codes. These are numeric values that represent letters, numbers
and symbols. Figure 7.10 shows these codes and their meaning.

150

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Code Meaning Code Meaning Code Meaning Code Meaning Code Meaning Code Meaning

07 Beep 46 . 65 A 84 T 103 g 122 z
09 Tab a7 66 B 85 U 104 h 123 {
10 Newline 48 0 67 C 86 V 105 i 124 |
13 Return 49 1 68 D 87 W 106 | 125 }
27 Escape 50 2 69 E 88 X 107 k 126 ~
32 Space 51 3 70 F 89 Y 108 |
33 ! 52 4 71 G 0 z 109 m
34 " 53 5 72 H 9 [110 n
3B # 54 6 731 92 \ 111 o
%6 $ 55 7 74] 93] 112 p
37 % 56 8 75 K Y I 113 q
3B & 57 9 76 L %5 114 r
39 58 77 M % 115 s
0 59 78 N 97 a 116 t
41) 60 < 79 O % b 117 u
2 o+ 61 = 80 P 9 ¢ 118 v
43+ 62 > 81 Q 100 d 119 w
a4 63 ? 82 R 101 e 120 x
45 - 64 @ 83 S 102 f 121 y

Figure 7.10: The ASCII character codes

151

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
How to read ASCI | text files

There are many reasons why you may want to have a program read from and write to an ASCI|I file. Y ou may store
commonly used general notesin ASCII files on your hard disk which you would import into your drawing. Or you
may want to store drawing information on disk for later retrieval such aslayering setup or block lists.

Using a File Import Program

The program shown in figure 7.11 is a rudimentary text import program. In this section, you will use it to examine
the way AutoL|SP reads external ASCII files.

(Defun CIMPRT (/ sp dt stl gst)
(setg nme (getstring "\nName of text file to inmport: "))
(setg sp (getpoint "\nText starting point: "))
(setqg txt (open nne "r"))
(setq dt (read-line txt))
(setqg Ins (getdist "\nEnter line spacing in drawing units: "))
(setg ls (rtos Ins 2 2))
(setg Is (strcat "@ Is "<-90"))
(command "text" sp "" "" dt)
(while (/= dt nil)
(setqg dt (read-line txt))
(command "text" Is "" "" dt)
)
(close txt)
(command "redraw')

)

Figure 7.11: Atext import program

Create an ASCII file containing the program in figure 7.13. Give it the name Imprt.Isp. Go back to the Chapt7
AutoCAD file and load the Imprt.Isp file. Now run the program:

1. Enter imprt at the Command prompt.
2. At the prompt:
Name of text file to import:

Enter imprt.Isp.

152

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
3. At the next prompt:

Text starting point:
pick a point at coordinate 2,8.
4. At the next prompt:
Enter line spacing in drawing units:
enter .4.
The contents of the file Imprt.Isp will be written into the drawing area using AutoCAD text.

The C:IMPRT program starts out by prompting the user to identify the file to be imported. The user is prompted to
enter the name of the file to be imported:

(Defun C:IMPRT (/ sp dt stl gst)
(setg nme (getstring " \nName of text fileto import: "))
The entered name is saved as the variable nme. Next, the starting point is gotten:
(setq sp (getpoint "\nText starting point: "))
Thispoint is saved as sp. The last prompt sets up the line spacing:
(setq Ins (getdist sp " \nEnter line spacing in drawing units: "))

The spacing distance is assigned to the variable Ins. Note that getdist is used so the user can input a distance either
through the keyboard or cursor.

In the next line, the AutoL ISP function open is used to open the file to be imported:
(setq txt (open nme"r"))

In this expression, you are telling AutoL I SP to open afile to be read, then assign that file to the variable txt. From
this point on, you can treat the variable txt asif it were aread only version of the fileitself. This variable that
assumes the idobject of the fileis called the file descriptor. At first, it may seem confusing that you assign the file
name to a variable that is used to locate and open the file then assign the open file to a variable of a different name.
But you cannot perform file reads and writes directly through a variable of the same name as the file. Y ou can,
however, assign an open fileto a symbol then treat that symbol asif it were the file itself.

The syntax for openis:

(open [name of file] [read or write code])

The first argument is the name of the file to be opened. The second argument is a code that tells AutoL | SP whether
to allow read only, write only or appending operations on the file. The following table shows the codes and their
meaning.

153

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Code Uses

o Open afile for reading only. If the file does not exist, any attemptsto read from it will result in an error
message.

- Open afileto writeto. If the file already exists, its contents will be written over. If the file does not exit, it
will be created

"a' Open afile and append to the end if it. If the file does not exist, it will be created.
The next line uses the AutoL | SP function read-line to read the first line of text from the open file:
(setq dt (read-line txt))
A line of text is read from the file represented by the symbol txt and is assigned to the variable dt. Read-line has
only one argument, the file descriptor. When the file is first opened, AutoL ISP goes to the beginning of the filein

preparation to read it. Read-line reads the first line then AutoL 1 SP moves to the second line waiting for further
instructions to read the file. The next time the expression:

(read-line txt)

is evaluated, AutoL ISP will read the next line after the previously red line then move to the following line and wait
for another read-line function call.

The next two lines set up the location of the beginning of the text in the drawing editor:
(setq Is(rtosins 2 2))
(setqls(strcat " @" Is" <-90"))

The numeric value entered at the line spacing prompt is converted to a string then appended to the " @" and "<-90"
strings to create a string that can be used in the text command that follows. The next line writes the text from the
first line of the fileinto the AutoCAD drawing:

(command "text" sp"" "" dt)

The following while expression continually reads lines from the open file and writes them to the AutoCAD drawing
editor:

(while (/= dt nil)
(setq dt (read-line txt))
(command "text" Is"" "" dt)

)

The read-line function will return nil when it reaches the end of the file. At that point, the while expression stops its
recursion).

154

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Finally, to take care of housekeeping, the open fileis closed.

(close txt)

Thisisavery important step in the file reading process. If afileis not closed, the contents of that file can be lost.

We should mention that C:IMPRT requires the current text style to have a height value of 0. If thisis not the case,
then the program will not work properly. Thisis because in the line that actually writes the text into the drawing

editor:

(command "text" Is"" "* dt)

assumes that AutoCAD will prompt for a height value for the text. The height prompt occurs only when the current
text style has a height value of 0. If the current text style has a height val ue other than 0, the height prompt is
skipped. This would cause the above expression to add one too many returns in the text command sequence (see

figure 7.12).

With the AutoCAD default style height

you for a height,

Command.

Start point or Align/CentenFit/Middle/Right! Style:
Height<0 20> =

—

Fotation angle <0= -

Text: —=

set to 0, the text command will prompt [command "text" "@5<0" """t 2

Wiith the AutoCAD default style height

set to avalue other than 0, the text
command will not prompt you for a height.
This will result in an error if your

|[Commaﬂd “te)(t" II@.5¢:OII TR

command expression expects the height prompt.
Command, -

Start point or Align/Center/Fithiddle/Right/Style:
Rotation angle <0= -

-

Text: -

Command. -

2

ERREOR

Figure 7.12: The text command expects specific input

155

Copyright © 2001 George Omura,,World rights reserved

)

)

The ABC’s of AutoL ISP by George Omura

Writing ASCI | Filesto Disk

AutoLISP lets you create ASCII files. Y ou can use this capability to store different types of information ranging
from the current drawing status to general notes that appear in a drawing. The program in figure 7.13 demonstrates
this capability.

;Programto export text from AutoCAD -- Exprt.lsp
(Defun C EXPRT (/ fname txt selset count nne ol dtx)
(setqg fnane (getstring "\nEnter nane of file to be saved: "))

(setqg txt (open fname "w')) ;open file, assign synbol
(setq selset (ssget)) ;get sel ection set
(setqg count 0) ;set count to zero
(if (/= selset nil)
(while (< count (sslength selset)) ;while count < # of lines
(setg nnme (ssnane sel set count)) ;extract text string
(setqg oldtx (cdr (assoc 1 (entget nne))))
(wite-line oldtx txt) ;wite string to file
(setqg count (1+ count)) ;g0 to next line
);end while
);end if
(close txt) ;close file

); end C. EXPRT

Figure 7.13: Atext export program

Using a Text Export Program

Exit AutoCAD then create afile called Exprt.Isp containing the program shown in figure 7.16. Return to AutoCAD,
load the file and proceed with the following:

1. Erase the text you imported previously.
2. Use the dtext command and starting the text at the coordinate 2,8, write the following lines:
For want of a nail, the shoe was lost;
For want of a shoe, the horse was lost;
For want of a horse, therider waslogt;
3. Enter exprt to start the text export program.
156

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
4. At the prompt:

Enter name of fileto save:
Enter test.txt.
5. At the prompt:

Select objects:

Pick the lines of text you just entered picking each one individually from top to bottom. Press return when you are
done.

Thefile test.txt is created containing the text you had just entered using AutoCAD's Dtext command. To make sure
the file exists, enter the following at the command prompt:

type test.txt

The AutoCAD type command is the same as the DOS type command. It displays the contents of atext file.
AutoCAD will switch to text mode and the contents of test.txt will be displayed on the screen.

The Exprt program starts by prompting the user to enter a name for the file to be saved to:
(Defun c:exprt (/ tsn dir)
(setq fname (getstring " \nEnter name of fileto save: "))

Then, just as with the imprt program, the open function opens the file:
(setq txt (open n "w"))

In this case, the "w" code is used with the open functions since this file is to be written to. The next line obtains a
group of objects for editing using the ssget function:

(setq selset (ssget))

This selection set is saved as the variable sel set. Next, a variable count is give the value 0 in preparation for the
while expression that follows:

(setq count 0)

The next if expression checks to see that the user has indeed picks objects for editing.
(if (/= selset nil)

If the variable selset does not return nil, then the while expression is eval uated:
(while (< count (sslength selset))

(setg entnme (ssname selset count))

157

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(setq oldtx (cdr (assoc 1 (entget entnme))))

(write-line oldtx txt)
(setq count (1+ count))

)

This while expression uses the count variable to determine the number of timesit must evaluate its set of
expressions:

(while (< count (sslength selset))
The sdlength function returns the number of objects contained in a selection set. In this case, it returns the number of
objects recorded in the variable selset. Thisvalue is compared with the variable count to determine whether or not to
evaluate the expressions found under the while expression.
The next two expressions extract the text string value from the first of the objects selected:

(setg entnme (ssname selset count))

(setq oldtx (cdr (assoc 1 (entget entnme))))

This extraction process involves several new functions which are discussed in chapter . For now, just accept that the
end result is the assignment of the text value of the selected object to the variable ol dtx.

Now the actual writing to the file occurs:

(write-line oldtx txt)
Here the write-line functions reads the string held by oldtx and writes it to the file represented by the variable txt.
Write-line's syntax is:

(write-line [gtring][file descriptor])
The first argument is the string to be written to file while the second argument is a variable assigned to the open file.
The next line increases the value of count by one:

(setq count (1+ count))

This expression counts the number of times a string of text, and therefore an object, has been processed. Since the
while test expression checks to see if the value of count isless than the number of objects selected, once count
reaches a val ue equivalent to the number of objects selected and processed, the while expression stops processing.

158

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Finally, the all important close expression appears:

)

(close txt)

)

Just as with the C:IMPRT program, close must be used to properly close the file under DOS, otherwise its contents

may be in-accessible.

Read-line and write-line are two of several file read and write functions available in AutoL|SP. Table shows severd
other functions along with a brief description.

Function

(prinl symbol/expression)

(princ symbol/expression)

print symbol/expression)

(read-char file_descriptor)

read-line file_descriptor)

write-char integer
file_descriptor)

write-line string file_descriptor)

Description

Prints any expression to the screen prompt. If afile descriptor isincluded as an
argument, the expression is written to the file as well.

The same as prinl but execute's control characters. Also, String quotation marks are
dropped.

The Same as prinl but a new line is printed before its expression and a space is
printed after.

Reads a single character from the keyboard. If afile descriptor isincluded as an
argument, it reads a character from the file. The value returned isin the form of an
ASCII character code.

Reads a string from the keyboard or aline of text from an open file.

Writes asingle character to the screen prompt or if afile descriptor is provided, to
an open file. The character argument is a number representing an ASCII character
code.

Writes a string to the screen prompt or if a file descriptor is provided, to an open
file.

The three functions prinl, princ, and print are nearly identical with some dlight differences. All three use the same
syntax as shown in the following:

(princ[string or_string variable][optional file descriptor])

The file descriptor is a symbol that has been assigned an open file.

159

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The main difference between these three functionsisin what they produce as values. The following shows an
expression using prinl followed by the resulting value:

(prinl"\nFor want of a nail...")

"For want of anail..." "\nFor want of anail..."

Notice that the string argument to prinl is printed twice to the prompt line. This is because both prinl and AutoL ISP
will print something to the prompt. Prinl printsits aliteral version of its string argument. Autol | SPs read-eval uate-

print loop also prints the value of the last object evaluated. The net result it the appearance of the string twice on the
sameline.

Princ differs from prinl in that instead of printing aliteral version of its string argument, it will act on any control
charactersincluded in the string:

(princ "\nFor want of a nail...")
For want of a nail..." \nFor want of a nail..."

In the prinl example, the \n control character is printed without acting on it. In the princ example above, the \n
character causes the AutoCAD prompt to advance one line. Also, the string is printed without the quotation marks.
Again, the AutoL ISP interpreter prints the value of the string directly to the prompt line after princ does it's work.
Table Shows the other control characters and what they do.

Char acter Use

\e Escape

\n New line

\r Return

\t Tab

\nnn Character whose octal codeis nnn

The print function differs from the prinl function in that it advances the prompt one line before printing the string
then it adds a space at the end of the string:

(print "\nFor want of anail...")

"\nFor want of a nail..." "\nFor want of a nail..."

Just as with prinl, print prints aliteral version of its string argument.

160

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Conclusion

While agood deal of your effort using AutoL ISP will concentrate on graphics and numeric computation, the ability
to manipulate string data will be an important part of your work. Y ou have been introduced to those functions that
enable you to work with strings.

Y ou have also seen how these functions work together to perform some simple tasks like reading and writing text
files. But you don't have to limit yourself to using these functions for text editing. Since any kind of information can
be stored as a string, you may find ways to further enhance your use of AutoCAD through the manipulation of string
data. One of the more obvious uses that comes to mind is the importation of numeric data for graphing, charting or
other types of data analysis. Aslong asdatais stored in an ASCII format, AutoL ISP can read it. And with
AutoL|SP's data conversion functions, numeric data can be easily transated from ASCI| files.

161

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 8: Interacting with AutoLISP

Introduction Creating a Function to Handle Defaults
Reading and Writing to the Screen Dealing with Aborted Functions
Reading the Cursor Dynamically Using the *error* Function

Writing Text to the Status and Menu Areas Organizing Code to Reduce Errors
Calling Menus from AutoL | SP Debugaing Programs

Drawing Temporary | mages on the Drawing Area Common Programming Errors

Using Defaultsin a Program Using Variables as Debugging Tools
Adding Default Responses to your Program Conclusion

| ntroduction

AutoL | SP offers a number of ways to interact with AutoCAD and the user. Y ou have already seen how AutoL ISP
can control system variables through the setvar and getvar functions and you have seen the various ways your
programs can obtain information from the user through the get functions. Y ou can aso control the display of menus,
status and coordinate lines, graphic and text screens, and even the drawing area. By giving you control over the
display, you can enhance the way your programs interact with the user.

When writing your program, consideration should be made as to how the program will act under various conditions.
In this chapter, you will explore some of the ways you can exploit AutoL | SP and AutoCAD features to make your
programs more responsive to the user.

Reading and Writing to the Screen

There are many functions that will allow you to write prompts to the prompt line. But you are not limited to control
of the prompt. Several functions are available that allow you to both read and write to other parts of the AutoCAD
drawing editor. In this section, you will examine these functions.

Reading the Cursor Dynamically

In chapter 3 you used afunction called RXY. This function reads the cursor location relative to areference point and
writes the relative coordinate directly to the coordinate readout. This is done dynamically as the cursor moves. The
function that allows thisto occur isthe grread function. Grread's syntax is:

162

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(grread [optional track argument])

Grread is a general input device reading function. It reads input from the keyboard, buttons on your pointing device,
or the cursor location. Grread returns alist of two elements:

([integer][coordinatelist or integer])

Thefirst element is a code representing the type of input received. The second element is either an integer or list
depending on whether a point has been input or a keyboard or pointing device button has been depressed. Table
shows alist of codes for the first element of the list returned by grread:

Input Code M eaning

keyboard pressed. The second element of the list will be an integer representing the ASCII code

(2 [ASCII code]) of the key character pressed.

(3 [coordinate]) Cursor location picked. The second element of the list will be a coordinate list.

Screen menu cell picked. The second element of the list will be an integer representing the cell

(4 [cell #) number. The cells are numbered from top to bottom.

Dynamic cursor mode. The second element of the list will be a coordinate list. This codeis

(5 [coordinate]) returned only if a non-nil argument is supplied to the grread function.

Button on pointing device pressed. The second element of the list will be an integer representing

(6 [buitton #]) the button number.
Tabletl menu item selected. The second element of the list will be an integer representing the
(7 [box #]) ;
tablet item box number.
(7-10 [box #]) Tablet menu item selected. 7 equals tabletl menu group, 8 equals tabal et2 menu group and so
on. The second element of the list will be an integer representing the tablet item box number.
(11 [box #)) Aux1 menu item selected. The second element of the list will be an integer representing the

tablet item box number.

If two grread functions are used in sequence, and the first returns a code 6, the second grread
(12 [coordinate]) will return a code 12 and its second element will be the coordinate of the cursor at the time the
pointing device button was picked.

Screen menu item picked using keyboard input. The second element of the list will be the menu
cell number.

(13 [menu cell #])
Open anew AutoCAD file and turn on the snap mode. Enter the following at the AutoCAD command prompt:
(grread)

Now pick a point near the center of the screen using our mouse or digitizer puck. Y ou will get alist similar to the
following:

163

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(3(7.05.00.0))

Thefirst element of thelist isthe integer 3. thistells us that the pick button on the pointing device was entered. The
second element is a coordinate list showing the coordinate that was picked.

letslook at the expression in the RXY function that uses grread to read the cursor dynamically:

(setq pt (cadr (setq It (grread t))))
Thet argument tells grread to read the cursor location dynamically, that is, read it regardless of whether a button has
been pushed or not. By using the T option, grread reads the cursor location even asit moves. The value from grread

isassigned to the symbols|t for later processing. Thisvaluein turnis applied to cadr to obtain the coordinate list
from grread. Finally, the coordinate list is assigned to the symbol pt (see figure 8.1).

(setq pt(cadr(setq It (grread t))))
I |
.
(cadr(setqg [t (5 (4.2 4.5))))

; '

(setq pt (4.2 4.5))

Figure 8.1: The evaluation of the grread expression

Once the coordinate is read by grread in the above expression, it is processed by the following set of expressions:
(if (= (car It) 5)
(progn
(setq x (strcat
(rtos (- (car pt) (car Ipt1))) " x"
(rtos (- (cadr pt) (cadr Ipt1))) " SI="
(rtos (*(- (car pt) (car Iptl1))
(- (cadr pt) (cadr Iptl))
164

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

)

22)

)

)

(grtext -2x)

)

)

This set of expressions takes the x and y components of the point pt and subtracts them from the x and y components
of the reference point Ipt1, which is selected earlier by the user. It then multiplies the remaining x and y values
together to get the area of the rectangle formed by these two points. Finally, these values are turned into strings that
can be sent to the screen.

First, the if expression tests to see if the code gotten from grread is 5. This checks to see if the coordinate was
derived from the cursor in a drag mode.

(if (= (car It) 5)(progn
Remember that It isthe list from the grread expression so the car of It isitsfirst element, the input code.

The next line is the outer most nest of an expression that combines a set of strings together into one string using
streat:

(setq x (strcat

Thisisfollowed by an expression that subtracts the x component of Ipt1, our reference point, from the x of the
current point pt:

(rtos (- (car pt) (car Ipt1))) " x"

The resulting difference is converted into a string by rtos. The " x " element in this expression is the x that appears
between the x and y value in the coordinate readout (see Figure 8.2).

The next expression subtracts the y component of Iptl from the y of the current point pt then converts the resulting
difference into a string:

(rtos (- (cadr pt) (cadr Ipt1))) " SI="

The" SI=" at the end of thislineisthe SI= that appears after the coordinate list in the coordinate readout.

165

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The next two expressions multiplies x and y value differences to get the area of the rectangle represented by Ipt1 and
pt:

(rtos (*(- (car pt) (car Ipt1))
(- (cadr pt) (cadr Iptl))

)

22)

)

)

The 2 2 in the fourth line down are the unit style and precision arguments to the rtos function.

0 2 0 Sk 4

20000 20000 3= 400

The "x " from the program code. ——
The "SI=" from the program code-

Figure 8.2: The elements of the coordinate readout

166

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Writing Text to the Status and Menu Areas

Finally, all the values of the preceding group of expressions are concatenated then stored as the variable x which is
in turn given as an argument to grtext:

(grtext -2 x)
)
);end if
Grtext writes the value of x to the coordinate readout. Grtext's syntax is:

(grtext [cell code] [string] [optional highlight code])

The cell code is the number of the screen menu cell you want to write the string to. Screen menu cells are numbered
from 0 to the maximum number of cellsavailable minus 1. If a-1 is used for the cell code, the string is written to the
status area to the left of the coordinate readout. If the codeis-2, asinthe RXY function above, it is written to the
coordinate readout area (see figure 8.3).

Cammand:

0.0000,0,0000

-1 (Status Ling) -2 (Coordinate Readout)

Figure 8.3: The AutoCAD screen and the corresponding screen codes

167

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Although grtext allows you to display a string in the screen menu, such a string cannot be read by picking it with the
cursor as you might think. Instead, the underlying menu option that has been written over by the grtext function is
activated. If you want to override the underlying menu option, you can use grread to find the cell number picked
using the using the cursor. Once you know the cell number, you can write expressions that instruct AutoCAD to
perform alternate tasks.

Near the end of the RXY program, an expression sets the variable pick to T or nil depending on the input code from
the variable t:

(setq pick (=3 (car It)))

If the input code from It is equal to 3, then pick is set equal to T, otherwise it is set to nil. This expression controls
the while expression. If you look at the beginning of the while expression, the use of this expression becomes more
clear (seefigure 8.4).

(defun REXY (f ptlt x last pick)
(If (not pt)(setq pt (getvar "lastpoint™)))
iwhile [f= pickt)
(setq pt1 {cadr (setq lt (grread 0)))
(if (= {car It) 5)(progn
(setq x (strcat
(rtos (- (car pt1) {carpth) "= "
(rtos (- (cadr pt1) (cadr pt))) " Sl=
(rtos (*(- (car pt1) (car pt))
(- (cadr pt1) (cadr pt))

)
22
)

)

(grtext -2 x)

)
)
{setqg picki= 3 (car lt)) =

)
(cadr It}

)

Figure 8.4: The pick variable used to control the while expression.

168

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The while expression continually evaluatesits set of expressions aslong as pick is not equal to t. The last expression
checksto seeif theinput code from It is 3. If it is, that means that a point has been picked using the pick button. Pick
isthen set to T and the while expression stops running.

Calling Menus from AutoLISP

To make your program easier to use, you may want to have a particular menu appear whenever your program runs.
AutoL | SP provides the menucmd function for this purpose. Menucmd's syntax is:

(menucmd [menu specification])

The menu specification is a code used to call a particular menu. The code resembles the code used within the menu
system to call other menus (see Appendix___ for details on menu codes). The only difference between these codes
and their menu counterpart is that the menucmd code is not preceded by a dollar sign. The following table gives a
brief description of these codes:

Code Description
bn=menu name Calls button menus. The n that follows the b is the number of the button menu group.
S=menu name Calls screen menus

Calls Pull down menus. The n that follows the p is the number of the pull down menu

pn=menu name
group.

Figure 8.5 Shows the box program from chapter 2 with the addition of the menucmd function that calls the osnap
screen menu. If you were to load and run this program, the osnap screen menu would appear at the first prompt.
(Note that screen menus are not a standard part of AutoCAD release 13 or 14 though they can be turned on for
compatibility with older versions.)

(defun c:BOX (/ ptl pt2 pt3 pt4d)

(menucnd "s=osnapb")

(setqg ptl (getpoint "Pick first corner: "))

(setqg pt3 (getcorner ptl "Pick opposite corner: "))
(setq pt2 (list (car pt3) (cadr ptl)))

(setq pt4 (list (car ptl) (cadr pt3)))

(command "line" ptl pt2 pt3 pt4 "c")

)

Figure 8.5: The modified box program

169

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Using menucmd with the pull down menu'sis a bit more involved. Figure 8.6 shows the same program again this
time making a call to the filters pull down menu. If you load and run this program, the tools pull down menu with
the osnap options will pop down.

(defun c:BOX (/ ptl pt2 pt3 pt4d)

(menucnd "pl=filters")

(menucnd "pl=*")

(setqg ptl (getpoint "Pick first corner: "))

(setqg pt3 (getcorner ptl "Pick opposite corner: "))
(setq pt2 (list (car pt3) (cadr ptl)))

(setq pt4 (list (car ptl) (cadr pt3)))

(command "line" ptl pt2 pt3 pt4 "c")

)

Figure 8.6: The box program modified to call a pull down menu

Notice that aline was added in addition to the first menucmd line:
(menucmd " pl1=*")

Just as you must include the $p1=* in a menu macro to display the tools pull down menu, you must also include the
asterisk call in your AutoL1SP program following any pull down menu call.

Drawing Temporary Images on the Drawing Area

There may be times when you will want an image drawn in the drawing areathat is not part of the drawing database.
Such atemporary image can be useful to help you locate points or draw temporary images to help place blocks or
other objects. Figure 8.7 shows a program that performs zooms in a different way from the standard AutoCAD
zoom. In this program called C:QZOOM, the screen is divided visually into four quadrants. Y ou are prompted to
pick a quadrant at which point the quadrant is enlarged to fill the screen. Optionally, you can press return at the Pick
quadrant prompt and you will be prompted to pick a new view center. This option is essentially the same as a pan.
Copy C:QZOOM into an AutoL ISP file and load and run it.

170

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun md (a b)

(list (/ (+ (car a) (car

)
(defun C. QZOOM (/ center
wseg hseg |

(setq
(setq

;find screen position

center

hei ght

ratio width
ur ul |Ir newctr)

(getvar "viewctr"))
hei ght (getvar "viewsize"))

(setq ratio (getvar "screensize"))

(setg width (* height (/ (car ratio)(cadr ratio))))

(setqg wseg (/ width 2.0))

(setqg hseg (/ height 2.0))

;find screen corners

(Setg I'l (list (- (car center) wseg)(- (cadr center) hseg)
(Setq ur (list (+ (car center) wseg)(+ (cadr center) hseg)
(Setqg ul (list (- (car center) wseg)(+ (cadr center) hseg)
(Setg Ir (list (+ (car center) wseg)(- (cadr center) hseg)
;draw screen quadrants

(grdraw center (polar center pi wseg) -1 1)

(grdraw center (polar center 0 wseg) -1 1)

(grdraw center (polar center (* pi 0.5) hseg) -1 1)
(grdraw center (polar center (* pi 1.5) hseg) -1 1)

;get new center and hei ght

(setqg newctr

(cond

)

((not newctr)
(setqg newctr

(setqg hseg

(and (< (car
(setqg newctr

(and (< (car
(setqg newctr

(and (> (car
(setqg newctr

(and (> (car
(setqg newctr

(command "zoont

)

(get poi nt

"c" newctr

(get poi nt
hei ght)

newctr) (car
(md center

newctr) (car
(md center

newctr) (car
(md center

newctr) (car
(md center

"\ nPi ck quadrant/<pan>

"))

"\ nPi ck new center:

"))

center))(< (cadr newctr) (cadr

1))

center)) (> (cadr
ul))

newct r) (cadr

center))(< (cadr newctr) (cadr

Ir))

center)) (> (cadr

ur))

newct r) (cadr

hseq)

b)) 2) (/ (+ (cadr a) (cadr b)) 2))

center)))

center)))

center)))

center)))

Figure 8.7: The C:QZOOM program

171

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The program is written with comments to group parts of the program together visually. The first group establishes
severa variables. It finds the current view center point, the view height in drawing units, and the views height to
width ratio. Based on thisratio, it finds the width of the current view in drawing units. It also finds the values for
half the width and height (see figure 8.8).

" | width in pixels |
screensize |- ._‘

height in pixels

0.0000,0.0000

Figure 8.8: Finding the current screen properties

The next group establishes the four corner points of the current view. Thisis done by taking the center point of the
view and adding and subtracting x and y value for each corner (see figure 8.9).

172

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

}—7 W SE M. WSE g;»{

f

hseq

hseq

Command:

(Setg ll (list (- (car center) wseq)(- (cadr center) hzeq)))
(Setgur(list (+ (car center)wseng)(+ (cadr center) hseg)))
(Setg ul {list (- (car center) wsegl(+ (cadr center) hseqg))) __El
{=etq Ir (list (+ (car center) wseq)(- (cadr center) hseg)y)

Figure 8.9: Finding the current displays four corner coordinates.

The next group draws the lines that divides the screen into quadrants (see Figure 8.10). Looking athe first line, you
can see the grdraw function:

(grdraw center (polar center pi wseg) -11)
The syntax for grdraw is:

(grdraw [from point][to point][color_code][optional highlight code])

The lines grdraw draws act like blips. As soon as you issue any command that changes the display, including

173

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

redraws, the lines disappear. The first and second arguments to grdraw determine the endpoints of the temporary
line. The third argument is the color code. This code is an integer value that represents the color you want the line to
have. If the color codeis-1, then the line will be drawn in a color that compliments its background. This ensures that
the line will be seen. The fourth argument is optional. Whenever it is ainteger other than 0 the line will be drawn
highlighted. This usually meansin a dotted pattern similar to that shown in a crossing window.

Loaded menu cAACADTOVSOURCEWC AD mnx
Command. gzoom
Pick guadrantf=pan=:

Figure 8.10: The quadrants drawn on the screen

In the C:QZOOM program, grdraw draws lines from the center of the current view out toward the four sides of the
screen. The -1 color code is used so the color of the linesis opposite to the background color. Finally, the highlight
option is used by supplying a1 as afourth argument.

The last group of expressions does the work of reading the pick point from the user and determining which quadrant
to enlarge.

174

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Using Defaultsin a Program

Virtually every AutoCAD command offers a default value. For example, the line command will continue aline from
the last point selected if no point is selected at the First point prompt. Defaults can be a great time saver especially
when the user isin ahurry. In this section, you will see first hand how you can add defaults to your own programs.

Adding Default Responses to your Program

In the C:QZOOM program, a default response was added. If the user presses return without picking a point, the
program goes into a pan mode allowing the use to select a new view center. By giving the user the pan option in this
way, the program becomes easier to use and more flexible. Other AutoCAD commands also provide default values
for options. For example, the offset command will offer the last offset distance as a default value for the current
offset distance. If the user decides he or she can use that value, he or she only needs to press return to go on to the
next part of the command.

Y ou can incorporate similar functionality into your programs by using global variables. Figure 8.11 shows the
sequential number program created in chapter 5 with code added to include a default value for the number spacing.

(defun C. SEQ (/ ptl currnt |ast spc)

(if (not *seqpt)(setq *segpt 2.0)) ;setup gl obal default
(setq ptl (getpoint "\nPick start point: ")) ;get start point
(princ "\'nEnter nunber spacing <") ;first part of pronpt
(princ *seqpt) ;print default part of pronpt
(setqg spc (getdist ptl "> ")) ;finish pronpt - get spac'g
(setqg currnt (getint "\nEnter first nunber: ")) ;get first nunber
(setqg | ast (getint "\nEnter |ast nunber: ")) ; get second nunber
(if (not spc)(setq spc *seqpt)(setq *segpt spc));set global variable
(setqg stspc (rtos spc 2 2)) ;convert spacing to string
(setq stspc (strcat "@ stspc "<0")) ;Create spacing string
(command "text" ptl "" "" currnt) ;place first nunber
(repeat (- last currnt) ;start repeat 'till |ast
(setqg currnt (1+ currnt)) ;add 1 to current number
(command "text" stspc "" "" currnt) ; pl ace text
) ;end repeat
) :end defun

Figure 8.11: The modified C:SEQ program

Make the changes to your copy of the C:SEQ program so it looks like figure 8.11. Open a new filein AutoCAD,

175

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

load the newly modified C:SEQ program, and then run it. The program will run asit has before but it now offersa
default value of 2.0 at the Enter number spacing prompt:

Enter number spacing <2.0>:

Press return at this prompt. The default value of 2.0 will be applied to the number spacing. If you enter a different
value, .5 for example, this new value becomes the default. The next time you run the program, .5 will appear asthe
default value for the number spacing:

Enter number spacing <0.5>:

There are actually several expressionsthat are added to make this default option possible. First is a conditional
expression that test to seeif aglobal variable called *segpt is non-nil:

(defun C:SEQ (/ ptlcurrnt last spc)

(if (not *seqpt)(setq *seqpt 2.0))
Itits valueisnil, it is given the value of 2.0. Thisisjust an arbitrary value. Y ou can make it anything you like.
Next, the user is prompted to pick a point just as in the previous version of the program:

(setq ptl (getpoint "\nPick start point: "))
The next set of expressions does the work of displaying the default value to the AutoCAD prompt.

(princ "\nEnter number spacing <")

(princ *seqpt)

(setq spc (getdist pt1 " >: "))
The prompt is broken into three parts. The first expression above prints everything before the default value. The
second expression prints the default value. The third expression uses the getdist function to obtain a new distance

value from the user. The end of the prompt isincluded as the prompt string to the getdist function. The net result isa
single line appearing at the AutoCAD prompt (see figure 8.12).

AutoCAD Prompt:

Command: seq
Pick start point:
Enter number spacing <2 0=
| JL L

|

{princ "\nEnter number spacing <"

{princ "seqpt)
{getq spc ({getdist pt1 "= "))

Figure 8.12: Using princ to construct a prompt

176

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The next two lines are unchanged from the earlier version of the program:
(setq currnt (getint "\nEnter first number: "))
(setq last (getint "\nEnter last number: "))

The next lineisanew conditional expression that teststo see if a value was entered at the Enter number spacing
prompt:

(if (not spc)(setq spc * seqpt)(setq *seqpt spc))
This expression test the variable spc to see if it valueis non-nil. If it isnil, indicating the user pressed return without
entering avalue, spc is assigned the value of the global variable *seqpt. Thisisthe default value that appearsin the

Enter number spacing prompt. If spc does have a value, then its value is assigned to * seqpt thus making the value of
spc the new default value.

Therest of the program is unchanged:
(setq stspc (rtos spe 2 2))
(setq stspc (streat " @" stspc ' <0")
(command "text" pt1"" "" currnt)
(repeat (- last currnt)
(setq currnt (1+ currnt))
(command "text" stspc"" "" currnt)
)
)

Y ou may wonder why the global variable * seqpt starts with an asterisk. Names given to global variables don't have
to be different from other symbol but you may want to set them off by preceding them with an asterisk. Thisisa
convention used in Common L1SP which we have carried over to AutoL|SP.

Creating a Function to Handle Defaults

If you find that many of your programs utilize defaults, it may be worthwhile to create a function that creates the
default prompts for you. Figure 8.13 Shows the C:SEQ program with a function added to handle default prompts.

177

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun deflt (strl def)
(strcat strl1 " <" (rtos def 2 4) "> ")

)

(defun C.SEQ (/ ptl currnt |ast spc)
(if (not *seqpt)(setq *seqpt 2.0)) ; setup global default
(setq ptl (getpoint "\nPick start point: "))
(setqg spc (getdist (deflt "\nEnter spacing" *seqpt)))
(setqg currnt (getint "\nEnter first nunber: "))
(setqg | ast (getint "\nEnter |ast nunber: "))
(if (not spc)(setq spc *seqpt)(setq *segpt spc)) ;set global variable
(setqg stspc (rtos spc 2 2))
(setqg stspc (strcat "@ stspc "<0"))
(command "text" ptl "" "" currnt)
(repeat (- last currnt)
(setqg currnt (1+ currnt))
(command "text" stspc "" "" currnt)
)
)

Figure 8.13: The C:SEQ program with a default handling function.

The function deflt takes two arguments. The first is the beginning text of the prompt and the second is the default
value.

(defun deflt (str1 def / lunts)
(setq lunts (getvar " lunits"))
(strecat str1™ <" (rtosdef lunts4) " >: "

)

The arguments are concatenated to form a single string which is the value returned by the function. Since the default
valueisarea datatype, it isconverted to a string using the rtos function. The getvar expression at the beginning of
the function finds the current unit style which is used in the rtos function to control the unit style created by rtos.

The C:SEQ function uses this function in the expression:
(setq spc (getdist (deflt "\nEnter spacing” *seqpt)))

Here, the function is place where the prompt string normally appears in a getdist expression. When deflt is
evaluated, it returns the string:

"\nEnter spacing <2.0000>: "
This string is then supplied to the getdist function as the prompt string argument.
178

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The C:SEQ program still requires the two conditional expressions that were added earlier:

(if (not *seqpt)(setq *seqpt 2.0))

(if (not spc)(setq spc * seqpt)(setq *seqpt spc)) ;set global

But without increasing the amount of code, we are able to make a simpler and more flexible system to add prompts
to our programs. An added benefit is a more readable program.

Dealing with Aborted Functions

If you are writing programs for yourself, you may not be too concerned with how the program looks or behaves. But
if you start to write programs for othersto use, you have to start thinking about ways of making your programs more
error proof. Y ou should provide ways of easily exiting your program without creating problems for the unfamiliar
user. Error handling, asit is often called, is writing your program to include code that anticipates any possible input
errors the user might come up with. Fortunately, most of AutoL|SPs get functions have some error handling
capabilities built in. If you enter a string when a get function expects a point, you will get a message telling you that
apoint is expected.

But the most common error handling problem you will encounter is the aborted program. We can get an idea of how
an aborted program can affect a users work by using the C:BREAK2 program from chapter 6.

Open an AutoCAD file and load the C:BREAK?2 program. Start C:BREAK?2 by entering break?2 at the command
prompt. At the prompt:

Select object:
press the Ctrl-C key combination to abort the program. Now any time you use your cursor to select a point or object,

you will get the "nearest”" osnap override. This because you aborted the program before it was able to set the osnap
mode back to none (see figure 8.14).

179

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun ¢ break?Z (f pt1 pt2 pt3 ptd pto ang1 dst1)
(setvar "osmode" 512)

(setq pt1 (getpoint "nSelect object ")

(sefq ptd (getpoint pfT "nERter second paint ™) i
(setvar "osmode" 128)

(setq pta (getpoint pt1 "nSelect parallel line: ")
|

(

(

(

setvar "osmode™] |
}(setqangl (angle pt1 pt3))
setg dst1 (distance pt1 pta))
setq ptd (polar pt2 ang1 dst1))
(command

“oreal pt1 pt2

“orealk pta ptd

Yine" pt1 pta ™"

Yine" pt2 pt4 "

Frogram is aborted at this point.
Qsnap is not set back to MNone.

Figure 8.14: What happens when C:BREAK?2 is aborted

Using the *error* Function

To deal with problems like this, you can use a special AutoL ISP function called *error*. If afunctionis created
using *error* asits name, it is evaluated whenever an error occurs. Figure 8.15 shows the Break2.1sp file with the
addition if an *error* function. Open the Break2.1sp file and add the *error* function shown in figure 8.16.

180

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(defun *error* (nsQ)
(setvar "osnpde" 0)
(princ meg)

(princ)
)

(defun c:break2 (/ ptl pt2 pt3 pt4 ptO angl dst1l)

(setvar "osnode" 512) ;near osnap node
(setqg ptl (getpoint "\nSelect object: ")) ;get first break point
(setq pt2 (getpoint ptl "\nEnter second point: ")) ;get second break point
(setvar "osnpde" 128) ; per pend osnap node
(Setq pt3 (getpoint ptl "\nSelect parallel line: "));get 2nd line
(Setvar "osnode" 0) ;N0 osnap node
(setqg angl (angle ptl pt3)) ;find angle btwn |ines
(setqg dstl (distance ptl pt3)) ;find dist. btwn lines
(setq pt4 (polar pt2 angl dstl)) ;derive pt4 on 2nd line
(conmand

"break" ptl pt2 ;break 1st I|ine

"break" pt3 pt4 ;break 2nd Iine

"line" ptl pt3 "" ;close ends of I|ines

"line" pt2 pt4 ""

Figure 8.15: The Break2.lsp file with an error checking function added.

Save the file go back to the AutoCAD file. Be sure that osnap is set to "none". Load and start the C:Break2 program.
Again, at the Select object prompt, enter a Ctrl-C.

Now, instead of leaving the osnap modein the "nearest” setting, the *error* function returns the osnap setting back

to "none". It also prints the message:
Function cancelled

Letslook at this function to see exactly how it works. Thefirst line looks like atypical defun expression:
(defun *error* (msg)

The argument list contains the symbol msg. *error* accepts as an argument, an error message. This error message is
the one that appears normally without the *error* function. In the next line:

(setvar " osmode" 0)

181

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
the osnap modeis set back to 0. Next, the error message supplied by AutoL ISP is printed to the AutoCAD prompt:
(princ msg)

The last princ prevents the error message from appearing twice in the prompt.

This works very nicely assuming that you always have osnap set to "none". But suppose your osnap setting varies
during your editing session and you want your function to return to whatever the current setting is at thetime a
program isissued. Figure 6.16 shows the Break2 program again with some additional code that helps restore the
osnap setting to its previous setting regardless of what it may have been.

(defun *error* (nsQ)
(setvar "osnobde" *osnap)
(princ meg)

(princ)
)

(defun c:break2 (/ ptl pt2 pt3 pt4 ptO angl dstl)
(setqg *osnap (getvar "osnode"))

(setvar "osnode" 512) ;near osnap node
(setqg ptl (getpoint "\nSelect object: ")) ;get first break point
(setq pt2 (getpoint ptl "\nEnter second point: ")) ;get second break point
(setvar "osnpde" 128) ; perpend osnap node
(Setq pt3 (getpoint ptl "\nSelect parallel line: "));get 2nd line
(Setvar "osnode" *osnap) ;no osnap node
(setqg angl (angle ptl pt3)) ;find angle btwn |ines
(setq dstl (distance ptl pt3)) ;find dist. btwn |ines
(setqg pt4 (polar pt2 angl dstl)) ;derive pt4 on 2nd line
(command
"break" ptl pt2 ; break 1st I|ine
"break" pt3 pt4 ;break 2nd Iine
"line" ptl pt3 "" ;close ends of |ines
"line" pt2 pt4 ""

Figure 8.16: The C:BREAK2 program modified to handle any osnap setting
Theline
(setq *osnap (getvar " osmode"))

is added to the beginning of the program. This creates a global variable * osnap which holds the osnap code that
determines the current osnap setting. The expression that returns the osnap mode to "none":

182

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(setvar " osmode" 0)
isreplaced by one that sets the osnap mode to whatever was saved as * osnap:

(setvar " osmode" *osnap)
This same expression appearsin the *error* function so in the event of a cancellation by the user, the osnap mode is
set back to its previous setting.

Organizing Code to Reduce Errors

The error handling function shown here as an example could be incorporated into your Acad.Isp file so it isavailable
for any AutoL ISP error that may occur. Y ou can aso enlarge it to include other settings or variables that may
require resetting. But the way a program is organized can affect the impact an error has. For example, we could have
written the C:SEQ program in aslightly different way. Figure 8.17 shows the program with its expressionsin a
dightly different order.

(defun deflt (strl def)
(strcat strl1 " <" (rtos def 2 4) "> ")

)

(defun C.SEQ (/ ptl currnt |ast spc)
(if (not *seqpt)(setq *seqgpt 2.0)) ;setup global default
(setq ptl (getpoint "\nPick start point: "))
(setqg spc (getdist (deflt "\nEnter spacing" *seqpt)))
(if (not spc)(setq spc *seqpt)(setq *segpt spc)) ;set global variable
(setqg currnt (getint "\nEnter first nunber: "))
(setqg | ast (getint "\nEnter |ast nunber: "))
(setqg stspc (rtos spc 2 2))
(setq stspc (strcat "@ stspc "<0"))
(command "text" ptl "" "" currnt)
(repeat (- last currnt)
(setqg currnt (1+ currnt))
(command "text" stspc "" "" currnt)
)
)

Figure 8.17: The C:SEQ program in a different order

183

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The conditional expression:

(if (not spc)(setq spc *seqpt)(setq *seqpt spc))

immediately follows the expression that prompts for the spacing distance. This placement seems to be a natural

place for this expression since it immediately sets the variable spc or * seqpt to a value once the value of spcis
obtained. But what happens if the user decides to cancel the program after this expression is evaluated. If the user
inputs a new value for the number spacing, then the global variable * seqpt holds that new value even though the
program has been canceled. The next time the user uses the C:SEQ program, the value that was entered previoudly is
the new default value. Even though the program was cancelled the val ue entered for the number spacing became the
new default.

This may or may not be a problem but for many, issuing a cancel means canceling the affects of any data entry made
during the command. So to avoid having the global variable * seqpt changed when the program is cancelled, the
conditional expression is moved to a position after al the prompts are issued. This way, the user can cancel the
program with no affect to the * seqpt variable.

Debugging Programs

While we are on the subject of errors, We should discuss the debugging of your programs. As you begin to write
programs on your own, you will probably not get them right the first time. Chances are, you will write a program
then run it only to find some error message appear. Then you must review your program to try and find the
offending expression.

Common Programming Errors

Most of the time, errors will be due to the wrong number of parentheses or the wrong placement of parentheses
within your program. If thisisthe case, you usually get the error message:

error: malformed list
or
error: extraright paren

There aren't any simple solutions to this problem other than checking your program very carefully for number and
placement of parentheses. Perhaps the best thing to do isto print out your program. It is often easier to spot errors on
paper than it isto spot them on your computer screen.

Since a misplaces paren can cause a variety of problems, printing out your program and checking the parentheses
placement is the best start.

Another common error isto mis-spelled symbols. Thisis especially a problem with confusing lower case I's with 1's

and zeros with o's. The full range of typosis possible and often hard to detect. Again, the best solution is to print out
your program and take a careful look.

184

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

If you get the message:
error: Insufficient string space

chances are, you didn't provide a closing double quote in a string value as in the following:
(menucmd " pl=*)

Also, prompt strings cannot exceed 100 characters.

Finally, it iscommon to try to apply a wrong data type to a function. We have mentioned that one common error is
to give avariable a string value which happens to be a number:

(setq str1"1")
Later, you might attempt to use this string as an integer in another function:
(1+ strl)
Thisresultsin a bad argument type error.
For your convenience, we have included appendix B that contains the AutoL ISP error messages and their meaning.
Y ou may want to refer to it as you debug your programs.

Using Variables as Debugging Tools

AutoL ISP helps you find errors by printing to the screen the offending expression along with the error message. But
sometimes thisis not enough. If you find you are having problems with a program, you can check the variablesin
the program using the exclamation point to see what values they have obtained before the program aborted. If you
have an argument list, you may want to keep it empty until you finish debugging your program. That way, you can
check the value of the programs's variables. Otherwise, the values of the variables will be lost before you have a
chance to check them.

If you have a particularly lengthy program, you can use the princ function to print variables to the prompt line as th
program runs. By placing the princ function in strategic locations within your program, you can see dynamically
what your variables are doing as the program runs. Y ou can also have the princ function print messages telling you
where within your program it is printing from.

Conclusion

As you begin to write you own program, many of the issues brought to light in this chapter will confront you. We
hope that by introducing these topics now, you will have a better grasp of what is required in a program design. By
knowing what is possible within AutoCAD, you can develop programs that simplify the users efforts.

185

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

186

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 9: Using Lists to store data

Introduction
Using an Element of aList asaMarker

Getting Datafrom a List

Finding the Properties of AutoCAD Objects

Using Simple Lists for Data Storage

Using Selection Sets and Object Names

Evaluating Data from an entire list at once

Understanding the Structure of Property Lists

Using Complex Lists for Data Storage

Changing the Properties of AutoCAD Objects

Using Lists for Comparisons

Getting Object Names and Coordinates Together

Location Elementsin aList

Conclusion
Searching Through a List

| ntroduction

We mentioned that there are actually two classes of lists, those meant to be evaluated, which are called expressions
or forms, and lists that are repositories for data such as a coordinate list. No matter what the type of list you are
dealing with, you can manipulate lists to suite the needs of your program. In this section we will look at the general
subject of lists and review some of the functions that allow you to manipulate them.

There are a several functions provided to access and manipulate listsin avariety of ways. You have already seen car
and cdr. Table 9.1 shows alist of other functions with a brief description of their uses.

187

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Function Use

Apply elements of lists as arguments, to a function. Each element inthelist is

(mapcar function list list...) processed until the end of thelist is reached

(apply function list) Apply the entire contents of alist to afunction.

(foreach symbol list Setsindividual elements of alist to symbol then evaluates an expression containing

expression) that symbol. Each element in the list is processed until the end of the list is reached.

(reverselist) reverses the order of elementsin alist.

(Cons element list) Adds anew first element to alist. The element can be any legal datatype.

(append list list ...) Takes any number of lists and combines their elements into one list.

(last list) Finds the last element of alist.

(length list) Finds the number of elementsin alist.

(member element list) Finds the remainder of alist starting with element.

(nth integer list) E Q(Ijisstt.h'? ﬁleefrir;(satnggn ai Iris(:l ;/ivgt?rserig_trsgg bs the number of the desired element within

So far, we have concentrated on the use of lists as a means of structuring and building your programs. But lists can
also be use asrepositories for data. Y ou have already seen how coordinate list are used to storethe x and y
coordinate values of a point. Lists used for storing data can be much larger than the coordinate example. Consider
the mdist program you saw in chapter 5. This program uses the append function to constantly add valuesto alist.
Thislist isthen evaluated to obtain the sum of its contents (see figure 9.1).

(Defun C. MDI ST (/ dstlst dst)
(setq dstlst '(+ 0))
(while (setqg dst (getdist "\nPick point or Return to exit: "))
(Setq dstlst (append dstlst (list dst)))
(princ (Eval dstlst))

Figure 9.1: The Mdist program

We have an example here of alist being both arepository of data and aform or alist that can be evaluated. Thisis
accomplished by starting the list with afunctions, in this case, the plus function. Each time a value is appended to

188

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
thelist, it is evaluated to get the sum of the numeric elements of that list.

Suppose your have alist that does not contain a function, but you want to apply some function to it. The following
sections discusses ways you can use the functions listed in table 9.1 perform computations on lists.

Getting Data from a List

In the mdist program, a function was applied to alist to get the total of all the numbersin that list. Functions like
plus, minus, multiply and divide accept multiple numeric values for arguments. But what if you want to apply alist
to afunction that will only take single atoms for arguments.

Using Simple Lists for Data Storage

Mapcar is used where you want to use alist as a queue for arguments to a function. It allows you to perform a
recursive function on alist of items. For example, suppose you want the sequential numbering program from chapter
5 to place the numbers at points you manually select rather than in a straight line. Figure 9.2 shows a program that
doesthis:

;Programto wite sequential nunbers -- Seqrand.|sp

(defun C: SEQRAND (/ rand currnt ptlst)

(setvar "cndecho" 0) ;no echo to pronpt

(setg rand T) ;set up rand

(setqg currnt (getint "\nEnter first nunber in sequence: "))

(while rand ;while point is picked
(setq rand (getpoint "\nSelect points in sequence: "));get point
(setqg ptlst (append ptlst (list rand))) ;add point to list

)

(mapcar
" (I ambda (rand) ; define | anbda expression
(if rand ;if point (rand) exists
(progn
(command "text" rand "" "" currnt) ; pl ace nunber at point rand
(setqg currnt (1+ currnt)) ; get next numrber
)
)
ptl st ;list supplied to | anbda
(setvar "cndecho" 1) ;echo to pronpt on
(princ)

)

Figure 9.2: Programto place sequential number in random locations

189

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In the C:SEQRAND program, the following while expression is used to allow the user to pick random point
locations for the numbered sequence:

(while (not (not rand))

(setg rand (getpoint " \nSelect pointsin sequence: "))
(setq ptlst (append ptlst (list rand)))

)

This while expression creates the list ptlst comprised of points entered by the user. The user see the prompt:
Select points in sequence:

each time he or she selects a point. Once the user is done, the mapcar expression reads the list of points and applies
them to a function that enters the sequence of numbers at those points:

(mapcar

'(lambda (rand)

(if (not (not rand))

(progn

(command " text" rand " " "" currnt)

(setg currnt (1+ currnt))

)
)
)
ptlst

)

In this set of expressions, mapcar applies the elements of the list ptlst to alambda expression. Y ou may recall that a
lambda expression is like a function created using defun. The difference being that lambda expressions have no
name. The lambda expression above uses the single argument rand and, using the AutoCAD text command, writes
the variable currnt to the drawing using rand as a coordinate to place the text. The lambda expression also adds 1 to
the currnt variable increasing the number being added to the drawing by 1.

190

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Mapcar takes the list of points ptlst and, one at atime, applies each element of the list to the variable rand in the
lambda expression until all the elements of the list have been applied. The if conditional expression is added to the
lambda expression to check for the end of ptlst.

Mapcar can apply more than one lists to a function as shown in the following expression:

(mapcar 'setvar

'(" cmdecho™ " blipmode" " osnap” " expert™)

(00512 1)
)

Here mapcar applies several AutoCAD system variables to the setvar function. One element is taken from each list
and applied to setvar. "Cmdecho" is set to 0, "blipmodeis set to 1, "osmode" is set to 512, the nearest mode, and
"expert" isset to 1.

Evaluating Data from an Entire List at Once

Apply issimilar to mapcar in that it allows you to supply alist as an argument to a function. But rather than
metering out each item in the list one by one, apply gives the entire contents of alist as an argument all at once. As
an example, you could use apply in the Mdist function to add distances.

;Programto neasure non-sequential distances
(defun MDI ST (/ dstlst dst)
;while loop to obtain list of points-----------mmmmmm e
(while (setqg dst (getdist "\nPick distance or Return to exit: "))
(Setq dstlst (append dstlst (list dst))) ;append new point to |ist
(princ (apply '+ dstlst)) ;print current total
Y end WNi | @) - - s m o m o e oo
);end MDI ST

Figure 9.3: The Mdist function using the apply function.

In this example, apply is given the list of distances dstlst which it appliesto the plus function. If you load and run
this program, it works no differently from the earlier version of MDIST.

191

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Using Complex Lists to Store Data

In chapter 8, you created an error function that reset the osmode system variable when an error occurred. The
problem with that error function was that it was too specific. It only worked for certain conditions namely, to restore
the osmode system variable to its previous setting. But you can create a function that will help you handle system
variable settingsin a more general way using the length function.

The length function allows you to find the length of alist. This function is often used in conjunction with the repeat
function to process alist. The following function converts alist of system variablesto alist containing both the
variable and its current setting:

(defun GETMODE (mod1)

(setq *mod2°())

(repeat (length mod1)

(setq *mod2

(append *mod2

(list (list (car mod1) (getvar (car mod1l))))
)

)

(setg mod1 (cdr mod1l)))

)

Using this function, you can store the current system variable settingsin alist. Figure 9.4 shows the C:BREAK?2
program from chapter 8 with modifications to add the getmode function.

192

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;function to save systemvariable settings----------------commmn
(defun GETMODE (nodl)

(setqg *mod2 ' ()) ;create global variable to store settings
(repeat (length nodl) ;find length of variable Iist and repeat
(setqg *nmod2 ;build *nmod2 | st

(append *nod2
(list (list (car nodl) (getvar (car nodl))))
)

(setg nodl (cdr nodl)) ;00 to next elenment in |ist
); end repeat

)

;function to restore systemvariable settings-----------------mmmon
(defun SETMODE (nodl)

(repeat (length nodl) ;find length of list and repeat
(setvar (caar nodl) (cadar npdl)) ;extract setting info and reset
(setg nodl (cdr nodl)) ;00 to next elenment in |ist

); end repeat

;function for error trap ------------------ oo
(defun *error* (nsgQ)

(set node *nopd2) ;reset systemvariabl es
(princ meg) ;print error nmessage
(princ)

)

;programto break circle into two arcsS-----------------mm
(defun C.BREAK2 (/ ptl pt2 pt3 pt4 ptO angl dstl)

(get node ' ("osnode" "orthonode" "cndecho")) ; saves system vars.
(mapcar 'setvar ' ("osnpde" "orthonode" "cndecho") ;set vars. for funct.
'(512 0 0)
(setqg ptl (getpoint "\nSelect object: ")) ;get first break point
(setqg pt2 (getpoint ptl "\nEnter second point: ")) ;get second break point
(setvar "osnopde" 128) ; per pend osnap node
(Setqg pt3 (getpoint ptl "\nSelect parallel line: "));get 2nd |line
(setqg angl (angle ptl pt3)) ;find angle btwn |ines
(setqg dstl (distance ptl pt3)) ;find dist. btwn lines
(setq pt4 (polar pt2 angl dstl)) ;derive pt4 on 2nd line
(conmand
"break" ptl pt2 ;break 1st Iine
"break" pt3 pt4 ;break 2nd Iine
"line" ptl pt3 "" ;close ends of I|ines
"line" pt2 pt4 ""
(set mode *nod2) ;reset systemvars.

Figure 9.4: Revised BREAK2 program
193

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The following expression has been added to the BREAK 2 program:
(getmode '(" osmode" " orthomode" " cmdecho™))

Here, alist of system variablesis supplied as an argument to the getmode function. The following explains what
getmode does with thislist.

Thefirst expression in getmod creates a list to be appended to. The second expression is a recursive one using the
repeat function:

(setq *mod2 ‘()
(repeat (length modl)

Repeat uses an integer argument to determine the number of time it is to repeat the evaluation of its other arguments.
Here, length is used to find the length of mod1 which isalocal variable that has the list of system variables passed
to it. Length finds the number of elementsin the list mod1, which in our exampleis 3, and passes that value to the
repeat function (see Figure 9.5).

(repeat (length mod1)
|
: *
(length ("osmode" "orthomode" "cmdecho"))
[|
ot

(repeat 3

Figure 9.5: Using length and repeat in the getmode function

Repeat then processes the following set of expressions 3 times:
(setq *mod2
(append *mod2 (list (list (car mod1) (getvar (car modl)))))

)
(setqg mod1 (cdr mod1)))

194

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

This set of expressions takes an element of the list mod1 and finds the current setting for that element.
(getvar (car mod1l))
Then the setting value is combined with the setting name to form atwo element list:
(list (car modl) (getvar (car modl)))
Thisnew list is then appended to the list *mod2 and *mod?2 is assigned the value of the new appended list:
(setg *mod2
(append *mod2 (list (list (car modl)(getvar car mod1)))))
)
Finally the first element of mod1l isremoved in preparation for the next iteration:
(setg mod1 (cdr mod1)))
Remember that cdr returns a copy of alist with itsfirst element removed. The whole process is then repeated again.
When the getmode is done, aglobal variable called *mod2 is created. Mod2 might look like this:
((" osmode" 0)(" orthomode" 1)(" cmdecho” 1))

Inthislist, each element is another list that contains the mode as its first element and its current setting as its second
element.

Once the desired settings are saved, you can go on to change the settings to suite your program. In the case of the
C:BREAK2 program, "osmode" is changed to 512, the nearest setting, "orthomode" is set to 0, which turns off the
orthomode, and "cmdecho" is set to 0 which controls command echoing to the prompt line.

When BREAK?2 has done its work, you need a way to restore your saved settings. The setmode functionin figure
9.4 will restore the settings saved by the Getmodes function:

(Defun setmode (mod1)

(repeat (length mod1)

(setvar (caar mod1l)(cadar mod1l))
(setqg mod1 (cdr mod1))

)

)

195

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

This function also uses length and repeat to perform arecursion. In this case, the recursive function consist of two
EXPressions:

(setvar (caar mod1l) (cadar mod1))
(setg mod1 (cdr mod1))

Thefirst of these expressions takes the first element of the list of saved settings then appliesits two elements to
setvar. In our example, the result of this combination looks like this:

(setvar (caar modl)(cadar modl)) = (setvar " osmode" 0)

Theresult is an expression that sets"osmode" to 0. The next expression removes the first element from the list of
settings then the processes is repeated.

The setmode function is placed at the end of the C:BREAK2 program to reset the variables. It isalso placed in the
error function. Aslong as getmode is used in afunction to save system variables, The *error* function shownin
figure 9.4 will work to restore system variables in the event of a canceled AutoL ISP program. With the addition of
the getmode and setmode functions, you have a general system for maintaining system variables.
Using Lists for Comparisons
Like mapcar, foreach appliesindividual elements of alist to afunction. But foreach only accepts one list. Foreach is
often used to test elements of alist for a particular condition. For example, you could test alist of coordinates to sort
out those above another datum point:

(foreach n

'((4.00 1.00) (10.09 1.01) (11.96 6.80)

(7.0310.38) (2.11 6.79) (4.00 1.00))

(if (> (cadr n) 2)(Setq newlist (append newlist (list n))))

)

This function simply checks the y value of each coordinate against the value 2. If y is greater than 2, the coordinate
isadded to a new list that contains only coordinates whose y value is greater than 2.

Locating Elementsin a List

Y ou won't always want to use all the elements of alist in your programs. In many instances, you will want to obtain
a specific element from alist. There are two functions, member and nth, that can help you find specific elementsin a
list.

196

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Note:

In the following discussion, an obsolete component of AutoL ISP called Atomlist will be discussed. You can think of
Atomlist asa very big list. Just think of Atomlist as any list in which you want to place a marker that you can later
refer to..

Searching Through Lists

To see how these two functions work, look at a program called Clean. Clean is an older program intended for earlier
versions of AutoCAD that had limited memory resources. The purpose of Clean was to remove unused user-defined
functionsin order to free-up memory.

;programto clean synmbols and functions fromatonist and cl ose open files
(defun C:CLEAN (/ i item
(setg i 0) ;set up counter
;while not at the end of atomist do...
(while (not (equal (setq item(nth i atomist)) nil))

(if (= (type (eval item) 'FILE) ;if itemis a file
(close (eval item) ;close the file
);end I F
(setg i (1+ i)) ;add 1t counter
);end WH LE
(setqg atomist (menmber 'C: CLEAN atonmlist)) ;redefine atomi st
' DONE ;Wi thout synbol s
) ;previous to C: CLEAN

;and print DONE

Figure 9.6: The CLEAN program.

Before we analyze this program, we must first discuss the atomlist. Atomlist was a special list used to store datain
earlier versions of AutoCAD. It contains the names all of the built-in AutoL1SP functions. It was also used to store
any user defined functions and symbols. If you are using Release 11 or earlier, you can view its contents by first
flipping the screen to text mode, then entering:

latomlist
You will get alisting of al the user defined and built in AutoL1SP functions currently loaded into AutoCAD.

Thelist contains al of the AutoL | SP functions we have discussed so far plus afew we have not. If you are using

197

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Acad.Isp to load some of your own functions, they will also appear at the top of the list. Whenever you create a new
function or symboal, it is added to the beginning of atomlist. If you have an older version of AutoCAD, try entering
the following:

(setqg myfunc " mufunc")

If you enter 'atomlist. you will seethat myfunc is added to the list. The more functions you add, the larger atomlist
gets and more memory is used to store symbols and functions.

If the C:CLEAN function isincluded in your Acad.Isp file, it is also added to the atomlist at startup time.
C:CLEAN's purpose is twofold. First, it closes any files that may have been opened and inadvertently left open. This
might occur if the open function was used to open an ASCI| file and due to a function being canceled, the file was
never closed. Aswe mentioned, this can cause loss of datato the open file. Second, C:CLEAN clears the atomlist of
any function that is added after it thereby recapturing memory space.

In order to find and close any open files, C:CLEAN uses the while function in conjunction with the if and type
functions. First, a counter is set to 0. the symbol i is used as a counting device:

(setq i 0)

Next, awhile expression checksto seeif an item of the atomlist is equal to nil. The nth function is used to read each
element of atomlist.

(nth i atomlist)
Nths syntax is:
(nth [integer][list])

where integer is the numeric position of an element in list. In C:CLEAN, nth returns the element whose position
within atomlist is represented by i. The variablei isa counter to which 1 is added each time the while function loops
through the expressions it contains. The net result is that each element of the list atomlist is compared to nil. While
continues to loop through its expressions until such a condition is met (see Figure 9.7).

{defun C:CLEAMN (/1 item)
fsetgi 0)
| twhile (not {equal (setqitem (nth i atomlist)) nil})
fif (= (type (eval itemn)) 'FILE) X
{close (eval item))
lendIF
fsetgi{1+i1)
]
(setg atomlist (member 'C: CLEAN atomlist))
'DOME

)

Figure 9.7: Thewhileloop in C:CLEAN

198

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Notice that the element returned by nth is assigned to the variable item. This allows the next if conditional function
to test the element to seeif it is afile descriptor:

(if (= (type (eval item)) 'FILE)

The eval function is used to force an evaluation of the variable item to extract its value. Eval can be used to find the
value of anested symbol, that is, a symbol whose valueis also a symbol. Eval isthe basic mechanism by which
AutoL ISP evaluates expressions. It is always being applied to expressions by AutoL1SP. Y ou could think of eval as
the opposite of quote.

The type function above returns the data type of the value of item. If eval is not used, type would return the data type
of the symbol item rather than the data type of items value (see figure 9.8).

(type (eval item)) Inthe Clean function, the
value of ltem is always a

symbol from the Atomlist.
To find the data type of

(type (eval myfunc)) the value of [tem's value,
| | Eval is used. AutoLISP
* automatically finds the
(type "Myname") value of ltem, and then
| | Eval is applied to the
* value of [term to getits
STR value. Finally, Type finds

the data type of that value.

(type item) If Eval is not used, only
the value of [tem will be

applied to the Type
function. In the Clean

(type myfunc) function, ltem's value is
| | always a symbol, so if Eval
* is not used, Type will
SYM always return SYM when

given |tem as an argument.

Figure 9.8: Using eval to force one level of evaluation

199

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The following table gives alist of the values returned by type and their meaning:

Value Meaning

REAL real number

FILE file descriptor

STR string

INT integer

SYM symbol

LIST list and user defined functions
SUBR AutoL ISP function
PICKSET selection set
ENAME object name
PAGETB function paging table

If item turns out to be equal to afile descriptor or FILE, then the next line closes that file:

(close (eval item))

Using an Element of a List asa Marker
Once C:CLEAN has finished closing any open files, then it proceeds to redefine atomlist:
(setq atomlist (member 'C:CLEAN atomlist)
Here, the function member is used to find alist whose elements are all the elements of atomlist beginning with
C:CLEAN. The expression then assigns that list to atomlist. The symbol C:CLEAN acts like a marker within the list

telling the member function where to begin the list. The net affect isthat of clearing atomlist of all the symbols and
functions that were added to atomlist after C:CLEAN.

Members syntax is:
(member [element][list])

Member returns alist whose elements are the same as those of list starting with element.

200

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Finding the Properties of AutoCAD Objects

One of the most powerful features of AutoL ISP isits ability to access the properties of drawing objects. Y ou can
find properties such as the endpoint coordinates of lines, their layer, color and linetypes, and the string val ue of text.
Y ou can aso directly modify these properties.

Object properties are accessed using two AutoL | SP data types, object names and sel ection sets. Object names are
similar to symbolsin that they are a symbolic representation of an object. An object name is actually a device used
to point to arecord in a drawing database. This database record holds all the information regarding the particular
object. Once you knows an object name, you can access the information stored in the object's record.

Using Selection Sets and Object Names

A selection set is a collection of object names. Selection sets can contain just one object name or several. Each name
in the selection set has a unigue number assigned to it from zero to 1 minus the number of namesin the set.

To find out how you access this object information, letslook at the C:EDTXT PROGRAM used in chapter 7.

Asyou may recall, this program allows you to edit aline of text without having to enter the entire line. The fourth
linein C:EDTXT does the work of actually extracting the text string from the database:

(setq oldtxt (gettxt))
Here, the program makes a call to a user defined function called gettxt:
(defun gettxt ()
(setvar "osmode" 64)
(setq ptl (getpoint "\nPick text to edit: "))
(Setvar " osmode" 0)
(setq oldobj (entget (ssname (ssget ptl) 0)))
(setq txtstr (assoc 1 oldobj))
(cdr txtstr))
Gettxt first finds a single point ptl that locates the text to be edited:
(setvar " osmode" 64)
(setq ptl (getpoint "\nPick text to edit: "))
(Setvar " osmode" 0)

Next, the real work of finding the object is done. The next line uses several functions to extract the object name from
the drawing database:

201

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(setq oldobj (entget (ssname (ssget ptl) 0)))

Thisinnocent looking set of expressions does alot of work. It first creates a selection set of one object:

(Ssget ptl)

;function to find text string fromtext entity----------------------------
(defun gettxt ()

(setvar "osnode" 64) ;set osnap to insert

(setqg ptl (getpoint "\nPick text to edit: ")) ;get point on text

(Setvar "osnode" 0) ;set osnap back to zero
(setqg ol dobj (entget (ssnanme (ssget ptl) 0))) ;get entity zero from prop.
(setqg txtstr (assoc 1 ol dobj)) ;get list containing string
(cdr txtstr) ;extract string from prop

)

;function to update text string of text entity-------------“--“--“--------
(defun revtxt ()

(setg newt xt (cons 1 newtxt)) ;create replacenment propty.
(entnod (subst newtxt txtstr ol dobj)) ; updat e dat abase
)

;programto edit single line of text------------------------------------~-----
(defun C. CHTXT (/ count oldstr newstr osleng otleng oldt oldl
ol d2 newt xt ptl ol dobj txtstr ol dtxt)

(setqg count 0) ;setup counter to zero
(setqg ol dtxt (gettxt)) ;get old string fromtext
(setqg otleng (strlen oldtxt)) ;find length of old string
(setq oldstr (getstring T "\nEnter old string ")) ;get string to change
(Setg newstr (getstring T "\nEnter new string ")) ;get replacenment string
(setq osleng (strlen oldstr)) ;find length of substring-
;while string to replace is not found, do... to be repl aced
(while (and (/= oldstr oldt)(<= count otleng))
(setqg count (1+ count)) ;add 1 to counter
(setqg ol dt (substr ol dtxt count osleng)) ;get substring to conpare

);end WHI LE
;if counting stops before end of old string is reached...
(if (<= count otleng)
(progn
(setqg oldl (substr oldtxt 1 (1- count))) ;get 1st half of old string
(setqg ol d2 (substr oldtxt (+ count osleng) otleng));get 2nd hal f
(setq newt xt (strcat oldl newstr old2)) ;conmbine to nake new string
(revtxt) ; updat e drawi ng
)
(princ "\'nNo matching string found.") ;else print nmessage
);end I F
(PRI NC)
) ; END C: EDTXT

Figure 9.9: The C:EDTXT program

202

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Y ou may recall from chapter 4 that ssget accepts a point location, to find objects for a selection set. If you entered
the expression above at the command prompt, and pt1 has been previously defined as a point nearest an object, you
would get the name of a selection set. Try the following exercise:

1. Open an AutoCAD file and place the following text in the drawing:
For want of a battle, the kingdom was lost.
2. Enter the following expression:
(setq ptl (getpoint "\nPick thetext: "))
3. Use theinsert osnap override option from either the side or pull down menu and pick the text.
4. Enter the following expression:
(ssget ptl)
Y ou will get a message that looks similar to the following:
<Selection set: 1>

Thisisaselection set. The number following the colon in the above example would be different depending
on whether previous selections sets have been created.

5. Once a selection set has been created, ssname is used to find the object name. Enter the following:
(ssname (ssget ptl) 0)

Ssname will return the object name of a single object in the selection set. If you enter the expression above, you get
an object name that looks similar to the following:

<Object name: 600000c8>
Just as with selection sets, the number that follows the colon will different depending on the editing session.
The syntax for ssnameis:

(ssname [selection set][integer])

The selection set can be gotten from a symbol representing the selection set or directly from the ssget function asin
our example above. The integer argument tells ssname which object to select within the selection set. In our
example, there is only one object, so we use the integer 0 which represents the first object in a selection set. If there
were several objectsin the selection set, say 4, we could use an integer from 0 to 3.

At the next level, the function entget does the actual database extraction. Enter the following:
(setq oldobj (entget (ssname (ssget ptl) 0)))
203

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
You will get alist revealing the properties of the text.

((-1. <Entity name: 20a0598>) (0." TEXT") (5."33") (100.
" AcDbEntity") (67.0) (8."0") (100 . " AcDbText") (10 -0.147023 2.84992 0.0)
(40.0.2) (1. " For want of a battle, the kingdom waslost") (50 . 0.0) (41 .
1.0) (51.0.0) (7. " STANDARD") (71.0) (72 . 0) (11 0.0 0.0 0.0) (210 0.0
0.0 1.0) (100. " AcDbText") (73. 0))
Thislist obtained using entget is called a property list. Entgets' syntax is:

(entget [object name])

Entget returns alist containing the object's properties. Property lists consists of other lists whose first element is an
integer code. The code represents a particular property like an objects layer, color, linetype or object type. Property
listsare aclass of list called association lists.

You may recall that earlier in this chapter, you constructed alist of system variables. that list looked like the
following:

(("osmode" 0)(" orthomode" 1)(" cmdecho” 1))

Thisisalso an association list. each e ement of thelist isalist of two elements, the first of which can be considered
akeyword.

Each list within an object's property list starts with an integer code. That integer code is the key-value to that list
otherwise known as the group code. The group code is associated with a particular property. For example, the group
code 1 in associated with the string value of atext object. The 10 group code is associated with the insertion point of
the text. Table 9.2 shows the group codes for text and their meaning.

204

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Code M eaning

-1
0

7

8

10
11
21
31
40
41
50
51
71

72

Entity name

Entity type ("TEXT", "LINE", "ARC", etc.
Text style

Layer

Insertion point

Center alignment point (for centered text)
Right alignmenet point (for right-justified text)
Second alignment point (for fit or aligned text)
Text height

X scale factor

Rotation angle

Oblique angle

Text mirror code (2, mirrored in x axis; 4, mirrored iny axis)

Text alignment code (O, left justified; 1, center at baseline;2, right justified; 3, text uses
align option; 4, centered at middle; 5, text usesfit option)

210 3-D extrusion amount in X, y, or z direction

If you are familiar with the AutoCAD DXF file format and coding system, then these group codes should be
familiar. Appendix C gives adetailed listing of these codesif you want to know more.

Now that our expression has retrieved the property list, we need away to pull the information out of thelist. A
function for this purpose is found in the next line. Enter the following:

(setq txtstr (assoc 1 oldobyj))

In the previous expression, the property list is assigned to the variable oldobj. In the above expression, we see a new
function called assoc:

(assoc 1 oldobj)

205

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

This expression returns the list:

(1 ." For want of a battle, the kingdom was lost")
Remember that oldobj is the variable for the property list of the text you selected earlier.
The Syntax for Associs:

(assoc [key-value] [association list])

Assoc looks through an association list and finds the list whose first value is the key-value. It then returnsthe list
containing the key-value.

In the case of our property list example, assoc |ooks through the property list oldobj and finds the list whose first
element isthe group code 1 then it returns that list. The list returned by assoc is assigned to the symbol txtstr.
Finally, cdr is applied to txtsrt to obtain the string val ue of the selected text. Enter the following:

(cdr txtstr)

The string value associated with the group code 1 isretrieved. Figure 9.10 diagrams the entire operation.

(entget (ssname (ssget pt1) 0))

i *

=Selection set 1=

L entity O, entity 1, entity 2, stc.

f
<Entity name: 60000030=

¥
Froperty list

((-1 . =Entity name: 60000030=) (0 "TEXT")

(8. "0 (104 34948 5 84609 0.0) (40 . 0.2)

(1. "Forwant of a battle, the kingdom was lost ")
(5[] 00y (41 1.0)(51 . 00) (7 "STANDARD")
(71 .0 (72 . 0y (110000003 (21000 0.01.0))

Figure 9.10: Diagram of property list extraction

206

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In summary, to find a particular property of an object, you must first create a selection set containing that object
using ssget, then extract the object name from the selection set using ssname, then extract the property list using the
object name through the function entget. Once you have gotten the property list, you can apply assoc to it to get the
specific property you want using group codes. Finally, cdr can be applied to the singled out propert to get the value
of the property.

Understanding the structure of Property Lists

The first thing you might have notice about the property list in the example above is that most of the sublists were
two element lists with a period separating the elements. Thistype of list is called adotted pair. It isnot alist in the
true sense of the term because many of the functions used to manipulate lists will not work on dotted pairs. For this
reason, dotted pairs are usually considered a data type in themselves.

Y ou can use car and cdr on dotted pairsjust as you would on lists. for example, you could enter the following:
(car (A . B))

the symbol A isreturned. Y ou can also enter:
(cdr '(A . B))

and the symbol B is returned. Dotted pairs act slightly differently from regular lists. If cdr is applied to anormal list,
as the following:

(cdr '(A B))

alist, (B), isreturned. But in the case of a dotted pair, the second element of the dotted pair is returned by itself, not
aspart of alist.

Y ou can create a dotted pair using the cons function. Normally, cons must have two arguments. The first is the
element to be added to the beginning of alist and the second isthe list to be added to. Enter the following:

(cons'A '(B))

Thelist (A B) isreturned. Y ou could think of cons as the opposite of cdr. But if the second argument to consis not a
list, then a dotted pair is created. Enter the following:

(cons'A 'B)
The dotted pair (A . B) isreturned.
Cons and dotted pairs reflect the inner workings of AutoL ISP and to explain these AutoL1SP items thoroughly is
beyond the scope of this book. At the end of chapter 10, we mention a few sources for more information on the

general subject of LISP which can shed light on Cons and dotted pairs. For now, lets continue by looking at a
function that allows usto directly modify the AutoCAD drawing database.

207

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Changing the properties of AutoCAD objects

Now that you have seen how object properties are found, it is a short step to actually modifying properties. To
update an object record in the drawing database, you redefine the objects property list then use the function entmod
to update the drawing database. Looking at the edtxt.Isp file again, we find the revtxt function:

(defun revtxt ()
(setq newtxt (cons 1 newtxt))
(entmod (subst newtxt txtstr oldobj))

)

The first thing revtxt doesis use the cons function to create a dotted pair using the integer 1 for the first element and
the string value held by newtxt for the second. Newtxt is a string val ue representing the new text that is to replace
the old text oldobj. As we mentioned earlier, cons creates a dotted pair when both its arguments are atoms. The new
dotted pair looks like this:

(1. " For want of a nail, the kingdom was lost.")

Notice that the structure of thislist isidentical to thelist oldobj which was retrieved from the text property list
earlier.

Thelast line of the revtxt function does two things. first it uses the function subst to substitute the value of newtxt
for the val ue of txtstr in the property list oldobyj:

(subst newtxt txtstr oldobj)

Substr requires three arguments. the first is the replacement item, the second is the item to be replaced, and the third
isthelist in which the item to be replaced is found. Substr's syntax is as follows:

(subst [replacing item][item to be replaced][list containing item])

Subst returns alist with the substitution made.

Next, the function entmod updates the drawing database. It looks at the object name of thelist that is passed to it as
an argument. Thislist must be in the form of a property list. It then looks in the drawing database for the object
name that corresponds to the one in the list. When it finds the corresponding object in the drawing database, it
replaces that database record with the information in entmod's property list argument. The user seesthe result asa
new line of text.

Getting an Object Name and Coordinate Together

In the gettxt function, a function could have been used that doesn't require the you obtain a selection set. Entsel will
find a single object name directly without having to use ssget to create a selection set. Since Entsel only allows the
user to pick asingle object, it is best suited where a program or function doesn't require multiple selections of
objects.

208

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Here is gettxt using entsel:
(defun gettxt ()
(setq oldobj (entget (car (entsel "\nSelect object: "))))
(setq txtstr (assoc 1 oldobj))
(cdr txtstr)

)

Entsel acts like the get functions by allowing you to provide a prompt string. Instead of returning a number, string,
or point, entsel returnsalist of two elements. The first element is an object name, and the second isalist of
coordinates specifying the point picked to select the object:

(<Object name: 60000012> (4.0 3.0 0.0))

Aboveisasample of what is returned by entsel. Since our Gettxt function is only concerned with the object name,
car isused on the value returned from entsel:

(car (entsel "\nSelect object: "))
This expression replaces the ssget and ssname function used previoudly:
(ssname (ssget ptl) 0)

Also, since entsel pauses to allow the user to select an object, the getpoint expression can be eliminated along with
the setvar function.

Conclusion

Y ou have seen how lists can be used to manipulate data both as forms and as simple lists of information. AutoL ISP
makes no distinction between alist that is an expression to be evaluated and a list that is used to store data. Once
you understand the methods for manipulating list, you can begin to devel op some powerful programs.

In the next chapter, you will look in more detail at how you can access information directly from AutoCAD. You
will also look at how to access the property of complex objects such as blocks an polylines.

209

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

210

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 10: Editing AutoCAD objects

Introduction

Editing M ultiple Objects

Finding the Number of Objectsin a Selection Set

Improving Processing Speed

Using Cmdecho to speed up your programs

Improving speed through direct database access

Filtering Objects for Specific Properties

Filtering a selection set

Selecting Objects Based on Properties

Accessing AutoCAD's System Tables

Conclusion

| ntroduction

In the last chapter you were introduced to the ssname and entget functions that, together with ssget, allowed you to
extract information about an object from the drawing database. In this chapter, you will learn how to perform
operations on several objects at once. Also, you will look at how to obtain information regarding a drawing's table
information which consists of layers and their settings, viewport, UCSs and other system options.

There are actually several functions that allow you to access the AutoCAD drawing database directly. Table Lists
the functions and gives a brief description of each.

211

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Function Description
(entnext [object name]) If used with no argument, entnext will return the object name of the first

object in the database. If an object name is given as an argument, entnext
returns the first sub-object of object name. A sub-object is an object
contained in a complex object such as a polyline vertex or ablock attribute.

(entlast) Returns the object name of the last object added to the drawing database.

(entsel [prompt]) Prompts the user to select an object then returns a list whose first element is
the object's name and whose second element is the pick point used to select
the object. A prompt can be optionally added. If no prompt is used, the
prompt " Select object:" is given automatically.

(handent handle) Returns an object name given an object's handle.

(entdel object name) Deletes object name. If object has previously been deleted in the current
editing session, then the object named will be restored.

(entget object name) Returns the property list of object name

(entmod property list) Updates the drawing database record of the object whose object name appears
in the property list. The object name isthe -1 group code sublist of the
property list.

(entupd object name) Updates the display of polyline vertices and block attributes that have been

modified using entmod.

Y ou have aready seen first hand how afew of these functions work. In this and the following chapter, you will
explore the use of several more of these very powerful editing tools.

Editing Multiple objects

The Edtxt program you looked at in the last chapter used ssget to obtain a single object. However, ssget isreally
better suited to obtaining multiple sets of objects. Y ou can use groups of objects collected together as selection sets
to perform some operation on them all at once.

To examine methods for editing multiple objects, we will look at a program that offers an alternate to the Extend
command. Though Extend allows you to extend several objects, you have to pick each object individually. Picking
objectsindividually allows for greater flexibility in the type of object you can extend and the location of the
extension. However, there are times when you will want to perform a multiple extend operations like extending
several linesto aanother line.

212

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Y ou can use AutoL I SPs' ssget function to help you simplify the processing of multiple objects. Figure 10.1 shows a
sketch of how a multiple extend program might work manually and Figure 10.2 shows the actual program derived
from that sketch.

AutoCAD prompt:

Select boundary edges ..

Select objects:
-

Fickline to extend other
lines to.

AutoCAD prompt:
Select objects: <RETURN=
Select ohjects to extend
-
= \

Fick line to extend at the
end closest tothe line it
isto be extended to.

AutoCAD prompt:
Y Select objects to extend:
Select objects to extend:

I

+i +§
P -

Zontinue to pick all the
other lines to extend until
they are all extended.

Figure 10.1: Sketch of process using extend.

213

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;Programto extend multiple lines - Mext.lsSp --------mmmmmmmm oo

(defun c: MLEXT (/ x y ssetl count ptl pt2 int obj elst)

(graphscr) ;shift to graphics
(princ "\'nSel ect Boundary edge...") ; print pronpt
(setqg obj (car (entsel))) ;Get entity nane
(setg x (getpoint "\nPick axis crossing lines to extend: "))
(setqg y (getpoint x "\nPick endpoint: ")) ;get axis crossing lines
(setqg ssetl (ssget "c" x vy)) ;get entities to extend
(setqg count 0) ; set counter
(if (/= ssetl nil) ;test for selection set
(while (< count (sslength ssetl)) ;while still select. set

(setq elst (entget (ssnane ssetl count)) ;get entity nane
ptl (cdr (assoc 10 elst)) ;get one endpoint
pt2 (cdr (assoc 11 elst)) ;get other endpoint

int (inters xy ptl pt2) ;find intersection
);end setq of axis and line
(conmand "extend" obj "" int "") ;command to extend |ine
(setqg count (1+ count)) ;g0 to next |ine count
);end while

);end if
); end defun

Figure 10.2: The Mlext.Isp file

1. Open afile called Mlext.Isp and copy the program from figure 10.2 into your file. Start AutoCAD and
open anew file called chapt10. Remember to add the equal sign at the end of the file name.

2. Draw the drawing shown in figure 10.3. The figure indicates the coordinate location of the endpoints so
you can duplicate the drawing exactly. Do not include the text indicating the coordinates.

3. Load the Mlext.Isp file and enter mlext at the command prompt. When you see the prompt
Select boundary edges...
Select object:

pick the line labeled boundary edge in figure 10.3. At the next prompt

Pick axiscrossing linesto extend:

214

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

4. A rubber banding line representing the crossing axis appears. Pick apoint at coordinate 8,2. Y ou can use
on the snap mode and dynamic coordinate readout to help you locate this point.

5. At the next prompt
Pick endpoint:

pick a paint at coordinate 8,9. The lines that are crossed by the axis are extended to the boundary edge line.
Letslook at how this program works.

1.8
1.7 10,7
1.6 10,6
1.5 10,5
1.4 10,4
1.3 10,3
12,2

Command:

Eoundary edge

Figure 10.3: Lines drawn in the chapt10 file

Let'slook at how this program works. The first expression in the program is:
(graphscr)

Thissimply flips the display to the graphics screen in case the user is currently in Text mode. Another function

215

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

called Textscr does just the opposite. It flips the display into text mode if the current screen isin a graphics mode.
Next, the Mlext finds the line used to extend to:

(princ "\nSelect boundary edge...")

(setq obj (car (entsdl)))
Here we use entsel to obtain the object name. Since entsel returns atwo element list containing the name and pick
coordinate, we use car to extract the object name from the list. Also note that we use a prompt similar to the one
used by the extend command.
The next several lines creates a selection set of lines to extend:

(setq x (getpoint "\nPick axis crossing linesto extend: "))

(setq y (getpoint x "\nPick endpoint: "))

(setq sset1 (ssget " c” xy))

Here two points are obtained indicating an axis along which the lines to be extended lie. These points will be used
later to help find other pick points. Then ssget is used with the crossing option to create a selection set. The two
points defining the axis are used as the two corner points of the crossing window.

The next two lines do some setup work:
(setq count 0)
(if (/= ssetl nil)

Thefirst of these two lines set a counting variable to zero. The next line checks to make sure a set of objects has
indeed been selected and a selection set created.

Once these things have been established, the actual work is done:
(while (< count (sslength sset1))
(setq elst (entget (ssname ssetl count))
(setq ptl (cdr (assoc 10 elst)))
(setq pt2 (cdr (assoc 11 elst)))
(setqint (intersx y ptl pt2))
(command " extend" obj "" int"")
(setq count (1+ count))

);end while

216

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

This while expression is evaluated until the counter variable count reaches the total number of objectsin the
selection set ssetl. Each time the expression is evaluated, count isincreased by one until count equals the length of
the selection set. Letslook at what each iteration of the while expression does.

Finding the Number of Objectsin a Selection Set

First, the while expression checks to seeif the counting variable count isless than the total number of elementsin
the selection set ssetl. Thisis done through the sslength function:

(while)< count (sslength ssget1))
Sslength simply returns the number of objectsin its selection set argument. The argument can be the actual
selections set or a symbol representing it. In our example, the symbol ssgetl isused. If count isless than the number

of objects, we know that we haven't processed all the objects in the selection set, in which case, the expressions that
follow are evaluated.

Next, the variable elst is given the object name of an object in the selection set:
(setq elst (entget (ssname ssetl count)))

The count variable is used by ssname to determine which object in the selection set ssetl isto be examined. Entget
then extracts the property list for that object and thislist is assigned to the variable el t.

Next, the two endpoints of the objects are extracted:

(setq ptl (cdr (assoc 10 est)))

(setq pt2 (cdr (assoc 11 elst)))
Here the Assoc function is used to extract the two endpoint coordinates from the property list. The group codes 10
and 11 are used by Assoc to locate the sublist in elst containing the coordinates in question (see appendix C for afull

list of group codes and their meaning). These coordinates are assigned to variables pt1 and pt2.

Once the endpoint's coordinates are found, a function called intersis used to find the intersection point of the current
object being examined and the object crossing axis derived in the beginning of the function:

(setgint (intersxy ptl pt2))
Intersis afunction finds the intersecting point of two pairs of coordinates. Inters syntax is:

(intersx; Y1 Xz X2)
where x; and y; are the x and y coordinates of one axis and x, and y, are the coordinates of the second axis. Inters
returns a list containing the coordinates of the intersection of the two axes. In the Mlext program, thislist is assigned
to the variable int.

Finally, the command function is used to invoke the extend command and extends the current object:

(command " extend" obj "" int"")

217

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The first thing that the extend command asks for isthe line to extend to. Here, obj is used to indicate that line. A
return isissued to end the selection process then a point value is entered to indicate both the line to be extended and
the location of the extend side. In this case, the intersection point of the line and the extend axisis used for this
purpose. Finally, areturnisissued to end the extend command.

Thelast linein the while expression increases the value of count by one in preparation to get the next object in the
selection set.

(setq count (1+ count))
If count is still less than the number of objects in the selection set, the process repeats itself.

Since the Extend and Trim commands work in a nearly identical way, you can create a program that performs both
multiple extends or trims on lines by changing just a few elementsin the Mlext program. Figure 10.4 shows such a
program called Etline. The elements that are changed from Mlext are indicated in the comment.

;programto extend or trimmultiple lines --Etline.lsp----------------------

(defun c: ETLINE (/ x y u ssetl count ptl pt2 int obj)
(graphscr) ;shift to graphics
(initget "Extend Trini) ; ADDED set keywor ds

(setq EorT (getkword "\Extend or <Trinp:

")) ; ADDED sel ect operation

(if (equal EorT "")(setq EorT "Trint)) ; ADDED t est operation choice
(princ "\'nSel ect boundary edge...") ; print pronpt

(setqg obj (car (entsel))) ;Get entity nane

(setg x (getpoint "\nPick axis crossing lines to edit: "))

(setqg y (getpoint x "\nPick endpoint:
(setqg ssetl (ssget "c"

(setqg count 0)
(if (/= ssetl

;get axis crossing |lines
;get entities to extend

;set counter

test for selection set

"))
Xy))

nil)

(while (< count (sslength ssetl)) ;while still select. set
(setqg elst (entget (ssnane ssetl count)) ;get entity nane
ptl (cdr (assoc 10 elst)) ;get one endpoint
pt2 (cdr (assoc 11 elst)) ;get other endpoint
int (inters xy ptl pt2) ;find intersection
);end setq of axis and line
(if (equal EorT "Extend") ; ADDED Test for extend choice
(command "extend" obj int "") ;extend line or...
(comand "trint' obj int "");ADDED trimline
);end if
(setqg count (1+ count)) ;g0 to next |ine count
);end while

);end if
); end progn

Figure 10.4: Program to perform both extend an trim functions
218

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

| mproving Processing Speed

When you begin to write program that act on several objectsin arecursive fashion, speed beginsto be an issue.
There are two things you can do to improve the speed of such recursive program. Thefirst isto simply set the
cmdecho system variable to 0. the second is to modify the drawing database directly rather than rely on AutoCAD
commands to make the changes for your. In this section, you will look at both options first hand.

Using Cmdecho to Speed up Your Program

Y ou may have noticed that when you ran the mlext program, the commands and responses of each line edit appeared
in the command prompt. The program is actually slowed by having to wait for AutoCAD to print its' responses to
the prompt line. Y ou can actually double the speed of the Mlext program by simply adding the following expression
at the beginning of the program:

(setvar " cmdecho" 0)
Cmdecho is an AutoCAD system variable that controls the echo of prompts to the command prompt. When set to
zero, it will suppress any AutoCAD command prompts that would normally occur when AutoL ISP invokes an
AutoCAD command.

Open the Mlext.Isp file and add the above line to the program. Also include the following line at the end of your
program to set the cmdecho variable back to 1.

(setvar " cmdecho" 1)

Y our file should look like figure 10.5. This figure shows the Mlext program with the changes indicated by
comments.

219

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;Programto extend nultiple lines - Mext.Isp -------------mmmmmmmmooo

(defun c: MLEXT (/ x y u ssetl count ptl pt2 int obj)

(graphscr) ;shift to graphics
(setvar "cndecho" 0) ; ADDED echo to pronpt off
(princ "\'nSel ect Boundary edge...") ;print pronpt
(setqg obj (car (entsel))) ;Get entity nane
(setg x (getpoint "\nPick axis crossing lines to extend: "))
(setqg y (getpoint x "\nPick endpoint: ")) ;get axis crossing |lines
(setqg ssetl (ssget "c" x vy)) ;get entities to extend
(setqg count 0) ; set counter
(if (/= ssetl nil) ;test for selection set
(while (< count (sslength ssetl)) ;while still select. set

(setq elst (entget (ssnane ssetl count)) ;get entity nane
ptl (cdr (assoc 10 elst)) ;get one endpoint
pt2 (cdr (assoc 11 elst)) ;get other endpoint

int (inters xy ptl pt2) ;find intersection
);end setq of axis and line
(conmand "extend" obj "" int "") ;command to extend |ine
(setqg count (1+ count)) ;g0 to next |ine count
);end while
);end if
(setvar "cndecho" 1) ; ADDED echo to pronpt back on

); end defun

Figure 10.5: The Mlext.Isp file with the additions made.

Next, go back to the Chapt10 drawing and re-create the drawing in figure 10.3. Load and run the Mlext program as
you did previoudy. Notice that it runs much faster and that the extend command prompts no longer appear at the
command prompt. Setting Cmdecho to zero will improve the speed of any program that executes AutoCAD
commands recursively.

Improving Speed Through Direct Database Access

Another method for improving speed is to make your program modify the drawing database directly instead of going
through an AutoCAD command. Figure 10.6 shows a modified version of the Mlext program that does this.

220

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;Function to find closest of two poOinNtsS------------mmmmmm o
(defun far (fx fy dlxf / dstl dst2 intx)
(setqg dstl (distance dl xf fx)) ;find distnce to one pt
(setqg dst2 (distance dl xf fy)) ;find distnce to other pt
;1f 1st pt.is farther than 2nd pt then eval 1st pt........
(if (> dstl dst2) fx fy)

;Proramto extend nultiple lines -- Mext2.lsp

’(defun c: MLEXT2 (/ ssetl count ptl pt2 int OBJ objx objy
elst int farl subl sub2)

(graphscr)

;Get entity list of line to be extended to then find endpoints..........

(princ "\ nSel ect boundary edge...") ; print pronpt

(Setqg obj (entget (car (entsel))) ; get boundary
obj x (cdr (assoc 10 obj)) ;get 1st endpoint
objy (cdr (assoc 11 obj)) ;get 2nd endpoi nt
ssetl (ssget) ;get lines to trim
count O

) ;set count to zero

;I F lines have been picked.........
(if (/= ssetl nil)
;As long as count is less than nunber of objects in selection set...
(while (< count (sslength ssetl))
;Get intersect of two lines and find farthest endpt of line ...
(setq elst (entget (ssnane ssetl count)) ;get entity list
ptl (cdr (setq subl (assoc 10 elst))) ;get 1st endpoint
pt2 (cdr (setq sub2 (assoc 11 elst))) ;get 2nd endpoi nt
int (inters objx objy ptl pt2 nil) ;find interects
farl (far ptl pt2 int) ;find far point

)
;1 F ptl equals point farthest fromintersect..........
(if (=farl ptl)
(entmod (subst (cons 11 int) sub2 elst)) ;update pt2
(entnmod (subst (cons 10 int) subl elst)) ;else update ptl

);end IF 2
(setqg count (1+ count)) ;add one to count
);end WHI LE
);end IF 1

); END of defun

Figure 10.6: The Mlext2 program that directly modifies the drawing database.

221

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

In this section you'll enter the modified program, and then use the Chapter 10 drawing to see how the program
works.

1. Exit the Chapt10 drawing and open an AutoL ISP file called Mlext2.1sp.
2. Copy the program in figure 10.6 into the file. Save and exit Mlext2.Isp.
3. Return to the Chapt10 drawing. Once again, reconstruct the drawing shown in figure 10.3.
4. Load and run Mlext2.Isp.
5. At the first prompt:
Select boundary edges...
Select object:
6. Pick the boundary edge line indicated in figure 10-3. At the next prompt:
Select objects:
enter a C to use a crossing window.

7. Pick the two pointsindicated in figure for the corners of the crossing window. The lines will extend to
the boundary edge line.

Notice that the extension operation occurred much faster than before. Since the program doesn't have to go through
an extralevel of processing, namely the AutoCAD Extend command, the operation occurs much faster. Letslook at
how the program was changed to accomplish the speed gain.

Y ou might first notice the function far added to the program file. We will look at this function a bit later. The
beginning of the program shows some immediate changes.

(defun c:MLEXT?2 (/ sset1 count ptl pt2int OBJ objx objy
elst int far 1 subl sub2)

(graphscr)

(princ "\nSelect boundary edge...")

(Setq obj (entget (car (entsal)))

(setq objx (cdr (assoc 10 abj)))

(setq objy (cdr (assoc 11 obj)))

Instead of simply obtaining the object name of the boundary edge line, we extract the endpoint coordinates of that
line and set the coordinates to the variables objx and objy. These endpoints are used later in conjunction with the

222

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

inters function to find the exact point to which aline must be extended.
Next, we obtain a selection set of the lines to be changed using ssget without any arguments:
(setq sset1 (ssget))

Remember that when you use ssget in this way, the user is alowed to select the method of selection just as any
select object prompt would. The user can use a standard or crossing window, pick objects individually, or selective
remove or add objectsto the selection set. In our exercise, you were asked to enter a C for a crossing window to
select the lines.

Thisisfollowed by an if conditional expression to test if objects have been selected.
(if (/= ssetl nil)

The following while expression then does the work of updating the drawing database for each line that was selected.
Just as with the Mlext program, the while expression checks to seeif the value of count isless than the number of
objectsin the selection set. It then finds the object list for one of the lines and derives the two endpoints of that line.

(while (< count (sslength ssetl))
(setq elst (entget (ssname ssetl count)))
(setq ptl (cdr (setq subl (assoc 10 elst))))
(setq pt2 (cdr (setq sub2 (assoc 11 elst))))
This part is no different from Mlext. But the next line is dlightly different from its corresponding line in Mlext.
(setq int (intersobjx objy ptl pt2 nil))

Here, intersis used to find the intersection between the line currently being examined and the boundary edge line.
We see the two variables objx and objy used as the first two arguments to inters. These are the two endpoints of the
boundary edge line derived earlier in the program. The variables pt1 and pt2 are the endpoints of the line currently
being examined. A fifth argument, nil is added to the inters expression. When this fifth argument is present in an
inters expression and is nil, then inters will find the intersection of the two pairs of coordinates even if they don't
actually cross (see figure 10-7).

223

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

pt1 {inters pt1 pt2 pt3 ptd)

The Inters function will
return the coordinates of
b3 ptd the intersection of twa
axes. The axes are applied
to Inters in the form of
pt2 coordinates indicating the
endpoints of the axes.

nil -— f{inters pt1 pt2 pt2 ptd)

ptl If Inters tries to find
the intersection of two
axes that do not cross,

— ptd then it returns nil.
pt3
pt2
pt1 _ _
{inters pt1 pt2 pt3 ptd nil)
ptd f If & fifth argument to
pt3 Inters is included and

it evaluates to nil, then

Inters will locate an
pt2 intersection even if the

two axes do not cross.

Figure 10-7: How the Inters function works

Interstreats the two lines asif they extended infinitely in both directionsin order to find a point common to both
lines. This feature is needed since the line being edited and the boundary edge line don't actually cross.

The next expression calls the user defined function far:

(setq farl (far ptl pt2int))
This function finds which of two pointsis closest to athird point. The first two argumentsto far are the points to be
compared against the third argument which is the reference point. Far then returns the point that is farthest from the
reference point. The result isthat far finds the endpoint of the line that is the farthest from the intersection of the line
and the boundary edge line. We will look at how far works later. For now lets continue with the main program.

Once the program finds the farthest of the two endpoints, the next three lines actually make the changes to the
database.

224

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(if (=farlptl)
(entmod (subst (cons 11 int) sub2 elst)) (entmod (subst (cons 10 int) subl elst))

);end IF 2

The conditional if expression checksto seeif the farthest endpoint of the current lineis equal to ptl. Thistest is
done to determine which endpoint of the current object should be modified. We want the program to modify the
endpoint closest to the intersection of the line and the boundary edge line so this test finds which endpoint is the one
to change. If pt1 happens to be the equal to farl, therefore being farthest endpoint, then the sublist representing pt2
ismodified. If ptl proves not to be the farthest endpoint, then the sublist associated with it is modified.

Remember that subst replaces one list for another within an association list. Then endmod updates the drawing
database record to reflect the new property list that is passesto it as an argument. The net result is the extension of a
line to the boundary edge line.

Therest of the program adds one to the counter variable and the whole process is repeated until all the objectsin the
selection set have been processed. Since this program circumvents the AutoCAD Extend command and directly
modifies the drawing database, it executes the changes to the lines objects much faster. However, to accomplish this
extra speed, you must do some additional programming.

Now, lets briefly look at the far function. It isafairly simple function that first obtains the distance between a
reference point and two other points, then depending on which point yields the greater distance, the points valueis

returned. The value of far's three arguments are passed to the variables fx fy and dsfx. Fx and fy are the pointsin
guestion and dsfx is the reference point:

(defun far (fx fy dixf / dst1 dst2 intx)

The function then finds the distance between fx and dIfx and assigns the value to dst1:
(setq dst1 (distance dixf fx))

The same procedure is applied to fy:
(setq dst2 (distance dixf fy))

Finally, the conditional if expression tests to see which distance is greater and returns a point value depending on the
outcome:

(if (> dst1 dst2) fx fy)

225

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Filtering Objectsfor Specific Properties

There are anumber of other functions available that allow you to manipulate sel ection sets Table lists them and
gives a brief description of what they do:

Function

(ssadd [ent. name][s. set])

(ssdel [ent. name][s. set])

(sslength [s. set])

(ssmemb [ent. name][s. set])

(ssname [s. set][nth object])

Description

Creates a selection set. If used with no arguments, a selection set is created
with no objects. If only an object name given as an argument, then a
selection set is created that contains that object. If an object nameand a
selection set name is given, then the object is added to the selection set.

Deletes an object from a selection set. ssdel then returns the name of the
selection set. IF the object is not a member of the selection set, then ssdel
returns nil.

Returns the number of objectsin a selection set.

Checksto see if an object is amember of a selection set. If it is, then ssmemb
returns the name of the selection set. if not, then ssmemb returns nil.

Returns the object name of a single object in a selection set. The second
argument to ssname corresponds to the object's number within the selection
set. The object numbers begin with zero and go to one minus the total
number of objectsin the selection set.

Y ou have already seen two of these functions, sslength and ssname, used in previous examples. Lets see how we can

use ssadd to filter out object selections.

Filtering a Selection Set

Figure 10-8 shows a function that isintended to filter out objects in a selection set based on layers. Thisfunctionis
useful where a group of objects are so close together that they are difficult to select, or in situations where severa
objects of different layers lie on top of each other and you want to select just the object on a specific layer. It returns
a selection or object name depending on whether the filtered selection set contains only one item.

226

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;function to filter entities by layer -- Lfilter.lsp----------cmommommnon
(defun LFILTER (/ lay sset count ent newent)
(setg lay (cons 8 (strcase (getstring "\nEnter |layer nane: "))))

(setqg sset (ssget)) ;get entities
(setqg count 0) ;set counter to zero
(while (< count (sslength sset)) ;while still select. set
(setq I§y2 (assoc 8 (entget(setq ent(sshane sset.count))))) ; get Iaygr
(if (equal lay lay2) ;if layer matches entity
(if (not newent) ;i f new not select. set
(setg newent (ssadd ent)) ; make new sel ect. set
(setg newent (ssadd ent newent)) ;else add to select. set
);end if
);end if
(setqg count (1+ count))
);end while
(if (=1 (sslength newent))(ssnane newent 0) newent) ;return select. set or
); end defun entity nane

Figure 10.8: The layer filtering program

Let's seefirst hand how this function works.
1. Open afile call Lfilter.Isp and copy the Lfilter program in figure 10.8. Save and exit the file.
2. Return to the AutoCAD Chapt10 drawing and erase any objectsin thefile.
3. Create the layerslisted in table 10.1. Be sure to assign the line types indicated for each layer.

4. Draw the lines shown in figure 10.9. and assign each line to the layer shown directly to the right of each
line. Use the coordinate and spacing information indicated in the drawing to place the lines.

5. Load the Lfilter program, then issue the erase command.
6. At the Select object prompt, enter:

(Ifilter)
You will get the prompt:

Enter layer name:

227

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
8. Enter hidden. You will get the next prompt:

Select objects:

9. Enter C to use a crossing window and pick the points 2,1.25 for the lower left corner of the window and
coordinate 8,8.25 for the upper right. The lines that pass through the crossing window will ghost. Press
return after picking points. The lines will un-ghost then the prompt will return the number of objects found.
The objectsin the selection you just made with the crossing window that are on the layer hidden will

ghost.

10. Pressreturn. Y ou have just erased only the items in your crossing window that were on the layer
hidden.

11. Enter the Oops command in preparation for the next section.

Layer Name Linetype

hidden hidden
center center
dashed dashed

Table 10.1: Linetypes for drawing in figure 10.8

Be sure Ltscale is setto 1.
Layer of line

1 center

— hidden
dashed
0
center
— hidden
dashed
0

center

16 lines @
0.5 spacing

— hidden
dashed
0
center
— hidden
] dashed
R 10,1

Figure 10.9: Test drawing for Lfilter.Isp

228

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Now that you know what Lfilter does, let'slook at how it works. First, it creates a dotted pair representing the layer
sublist in an object property list:

(defun LFILTER (/ lay sset count ent newent)
(setq lay (cons 8
(strcase (getstring " \nEnter layer name: "))))

When you are prompted for alayer, the name you enter is first converted to all upper case using the Strcase
function. Thisis done because the value associated with the layer group code in a property list is aways in upper
case.

In order to make a comparison of data, we must make sure that the values we use in the comparison are in the same
format. Since AutoL ISP is case sensitive when it comes to string values, we must make sure that the value the user

enters matches the case of the layer name in the property list. The strcase function will convert a string to either all
upper case or lower case depending on whether athird argument is present and is not nil.

Next, the cons function creates a dotted pair using 8 as the first element. 8 is the group code for layer names. The
dotted pair looks like this:

(8."Hidden")
Finally, the newly created dotted pair is assigned to the variable lay which will later be used as a filtering value.
The next line obtains the selection set to be filtered:

(setq sset (ssget))

Here, ssget is used without any argument thus allowing the user to select objects using any of the usual AutoCAD
selection options. This selection set isthen assigned to the variable sset.

Next we come to the while expression.
(setq count 0)
(while (< count (sslength sset))
(setq lay2 (assoc 8
(entget(setq ent(ssname sset count)))))
(if (equal lay lay2)
(if (not newent)
(setq newent (ssadd ent))

(setq newent (ssadd ent newent))
229

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
);end if
);end if
(setq count (1+ count))
);end while

This while expression compares the 8 group code sublist of each object in the selection against the variable lay. If it
finds a match, the object is added to a new selection set newent. Let'slook at this while expression in detail .

First, the counter is set to zero and the conditional test is set up:
(setq count 0)
(while (< count (sslength sset))
Then the 8 group code sublist from the first object in the selection set is extracted and assigned to the variable lay2:
(setq lay2 (assoc 8
(entget(setg ent(ssname sset count)))))
Next, the variables lay lay2 are compared:
(if (equal lay lay?2)

If there is a match signifying that the object ison layer "HIDDEN", then the program checks to seeif the selection
set newent exists:

(if (not newent)

(setq newent (ssadd ent))

(setg newent (ssadd ent newent))
If newent does not exist, then ssadd creates a new selection set containing the object whose layer group code sublist
matches (8 . "HIDDEN") then assigns that selection set to the variable newent. If newent does exist, ssadd adds the
object to the selection set newent and redefines newent. This last conditional if is required since ssadd must be given
different arguments depending on whether it isto create a new selection set or just add an object to an existing
selection set.
Finally, the counter in increased by one and the while conditional loop repeats itself:

);end if

);end if

(setq count (1+ count))

);end while

230

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Once the new selection set containing the filtered objects is complete, the last expression returns either the selection
set of objects, or if thereis only one abject in the selection set, the object name.

(if (= 1 (sdength newent))(ssname newent 0) newent)
);end defun

The function sslength is used with the = predicate to see if newent contains only one element. If it does, then ssname
is used to extract the object name of the element from the selection set newent. Otherwise, the entire selection set
newent isreturned. Thislast step is added to alow the user to use Ifilter where only one item is accepted for input
such asthe offset or fillet commands.

In this sample program, layers are used to filter objects, but you can use any object property as afilter. Y ou can filter
objects by linetype, color, or any property available from the property list. Consult the list of group codesin
Appendix C for alist of group codes and their associated properties.

Selecting Objects Based on Properties

Another method for filtering can be found built into the ssget function. Ssget allows you to select objects based on a
filter list. Thisfilter list is an association list much like a property list. The Getlayer function shown in figure 10.10
simply selects the entire contents of alayer that the user specifies.

;function to select all entities on alayer---------------ccccmmmmon

(defun GETLAYER (/ |ay)
(setg lay (list (cons 8
(strcase (getstring "\nEnter layer name: ")))))
(ssget "X' |ay)
)

Figure 10.10: The Getlayer function.

Let's see what it does:
1. Save and exit the chapt10 file.
2. Open afile called Getlayer.Isp and copy figure 10.10 into the file. Save and exit the file.
3. Return to the chapt10 drawing file then load Getlayer.Isp.

4. Issue the Erase command. At the Select object prompt, Enter:

231

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(getlayer)

5. At the prompt

Enter layer name:
Enter center. All the objects on layer Center will ghost.
6. Pressreturn. All the objects on layer Center are erased.

Getlayer doesits work by using the "X" argument to ssget. This argument allows ssget to create a selection set based
on an association list of properties. In the case of Getlayer, the list is one element long.

First, Getlayer prompts the user for alayer:
(defun GETLAYER (/ lay)
(setq lay (list (cons 8
(strcase (getstring "\nEnter layer name: ")))))

The layer name is used to construct an object property dotted pair much like the one in the flayer function. This
dotted pair is further included in alist using the list function. The result isalist containing a single dotted pair:

((8." CENTER"))

Thislist is assigned to the variable lay whichisin turn applied to ssget to create the selection set:
(ssget " X" lay)
)

Here we see the " X" argument used with ssget to tell ssget that afilter list isto be used to create the selection set.
Ssget then searches the drawing database to find all the objects that have properties that matches the filter list.

Getlayer could have been simplified to one expression thereby eliminating the need for the lay variable:
(ssget " X" (list (cons 8
(strcase (getstring "\nEnter layer name: ")))))

We include the lay variable to help explain how this function works.

A filter list can have more than one property sublist element much like an objects property list. But ssget will only
accept certain group codes in the filter list. Table shows those group codes and their associated properties:

232

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Group code M eaning

0 Object type

2 Block name

6 Linetype name

7 Text style name

8 Layer name

38 Elevation

39 Thickness

62 Color number; 0=byblock, 256=bylayer
66 Attributes-follow flag for blocks

210 3D extrusion direction vector

Accessing AutoCAD's System Tables

The tbinext and tblsearch functions are provided to help you gather information about layers, linetypes, views, text
styles, blocks, UCSs and viewports. Each one of these AutoCAD tools is represented in a table that contains the
tools status. Thinext and thlsearch return this table information in the form of association lists similar to object
property lists. But unlike object property lists, you cannot modify lists returned from Tblnext and tblsearch.
However, you can modify the settings associated with a tblnext or tblsearch listing using the standard AutoCAD
commands.

To use thinext, enter the following at the command prompt:

(tblnext " layer™)
You will get an association list similar to the following:
((0."LAYER") (2."0") (70.0)(62.7) (6." CONTINUOUS"))

Theindividual dotted pairs can be extracted from thislist using Assoc just as with any other association list or
property list. Enter the tbinext expression above again and you will get an association list of the next layer. Each
time tbinext is used, it advancesto the next table setting until it reaches the last item in the particular table you are
searching. Once it reaches the end, tbinext returns nil. To reset tbinext to read from the beginning of the table again,
you include a second argument that evaluates to non-nil asin the following:

233

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(tblnext " layer" T)

If this expression is entered, you will get the same list as the one you got the first time you used thinext. Weused T
as the second argument but it could be any expression that evaluates to non-nil. Once you get alist, you can
manipulate in the same way as any other association list.

Tblsearch works slightly differently. Instead of stepping through each table item, tblsearch will go to a specific table
item which you name. Enter the following:

(tblsearch " layer" "hidden")
You will get the association list pertaining to the layer "hidden".
((0."LAYER") (2."HIDDEN") (70.0)(62.7) (6 ."HIDDEN"))

If you include a non-nil third argument to tblsearch, then the next time thinext is used, it will start from the next item
after the one obtained from tblsearch.

Though we used layer settings as an example for tbinext and thlsearch, any of the table settings mentioned at the
beginning of this section can be used.

Figure 10.11 shows a program that uses tblnext to store layer settingsin an external file. This program can be useful
if you use a single multi-layered drawing for several types of output. For example, an architect might have a drawing
that serves as both an electrical layout plan and a mechanical floor plan with different layers turned on or off
depending on which type of plan you want to edit or print. Y ou can store your different layer settings for the
electrical and mechanical plans then restore one or the other group of settings depending on which plan you indent
to work on.

234

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;Programto save |ayer settings in a file -- Lrecord.|Isp

kdefun c:lrecord (/ fnane lafile record)

(setqg fname (getstring "\nEnter nane of layer file:

(setq lafile(open fnane "w'))
(setqg record (tblnext "layer" T))
(while record

(prinl record lafile)

(princ "\n" lafile)

(setqg record (tblnext "layer"))
);end while
(close lafile)

); end defun

;Programto restore | ayer settings saved by Irecord

"));get nane of file

;open file, file desc
;get first layer set.
;while record not ni
;print record to file
;print to next line
;get next |ayer

;close layer file

kdefun c:lrestore (/ clayer fnane lafile flayer |nanme ol dcset)

(setvar "cndecho" 0)
(setvar "regennode" 0)
(Setqg clayer (getvar "clayer"))
(setqg fnanme (getstring "\nEnter nane of |ayer file:
(setq lafile(open fnane "r"))
(setq flayer (read (read-line lafile)))
(while flayer
(setqg I nane (cdr (assoc 2 flayer)))
(setqg ol dcset (assoc 62 flayer))

(if (and (< (cdr oldcset) 0) (equal |name clayer))

(command "l ayer" "C' (cdr oldcset) Inane "Y'
(command "l ayer" "C' (cdr ol dcset) Inane "")
);end if
(Setqg ol dcset (assoc 70 flayer))
(if (= (cdr oldcset) 65)
(if (equal | name clayer)

(command"l ayer" "freeze" |name "y" "")
(command"l ayer" "freeze" |name "")
);end if

(command "l ayer" "thaw' Inane "")

);end if

(setq flayer (read-line lafile))

(if flayer (setq flayer (read flayer)))
);end while
(close lafile)
(setvar "regennode" 1)

); end defun

;turn of f pronpt echo
;turn of f aut oregen
;find current |ayer
;get layer file nane
;open layer file
read first line
;while lines to read
;get layer name

;get color setting
if col. is off/currnt
;insert "Y' response
;el se nornal

;find if frozen

;if frozen then..

;if current |ayer
;insert "y" response
;el se nornal

;else thaw | ayer
;read next in file
;strip quotes

;close file
;reset autoregen on

Figure 10.11: A programto store layer settings

235

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

The Lrecord program show at the top of the figure 10.11 simply creates a file then copies each layer association list
into the file. Lrecord uses the prinl function to perform the copying because prinl does not affect thelist in any
way. If princ were used, the strings data types within the list would be striped of their quotation marks. Also, Write-
lineis not used since it expects a string argument. Both princ and prinl will write any datatypeto afile.

The Lrestore program simply reads each line back from afile created by Lrecord. Since the Read-line function
returns a string, the read function is used to strip the outermost level of quotation marks from the string to return the
association list.

(setq flayer (read (read-linelafile)))

The Layer dataisthen extracted from this list and applied to the layer command which sets the layer back to the
saved settings. The if conditional test is used to seeif the layer to be restored is the current layer. A different
command expression is evaluated depending on whether the layer in question is current or not. This is done since the
layer command will issue an extra prompt if the current layer isto be turned off or frozen.

(if (and (< (cdr oldcset) 0) (equal Iname clayer))
(command "layer" " C" (cdr oldcset) Iname" Y" "")

(command " layer" " C" (cdr oldcset) Iname" ")

)

Conclusion

Y ou have seen a variety of waysto select, edit, and manipulate AutoCAD objects. Selection sets and object filters
can provide a powerful means to automating AutoCAD. Tasks that would normally take several minutes to perform
manually can be reduced to afew seconds with the proper application of selection sets and recursive expressions.

Y ou have also seen how changes in the way you write your program can affect your programs speed. Though the
speed of your programs may not be an issue to you now, as your experience with AutoL1SP expands, your need for
speed will also expand.

In the next chapter, we will continue the discussion of object access by looking at how polylines and attributes can
be edited with AutoL I SP.

236

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Chapter 11: Accessing Complex Objects

Introduction

Accessing polyline vertices

Defining a new polyline

Drawing the new polyline

Testing for polyline types

How arcs are described in polylines

Accessing object handles and block attributes

Extracting attribute data

Conclusion

| ntroduction

In this the final chapter, you will look at several programs that not only introduce you to some new AutoL|SP
functions, but also review many of the functions you learned about from earlier chapters. In the process, you will
learn how to access complex object types. Y ou will also look at waysto store data as a permanent record within a
drawing.

Accessing Polyline Vertices

Polylines are complex objects that are a composite of many objects. There are avariety of polylines from straight
lines, to three dimensional Bezier-spline polylines. But even the most complex polyline can be broken into three
basic components, Vertices, lines and arcs. AutoCAD stores polylines as a kind of compound object made up of
severa layers of information. To help you get a grasp of thisidea, you can think this storage structure as an onion;
as you peal off one layer, another layer isrevealed. Thefirst layer, the one accessed by entget, gives general
information about the polyline. In this section, you will look at ways to access deeper layers of information using
AutoL |SP.

237

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
It will help our investigation if we first take alook at typical polyline property list first hand.

Figure 11.1: Test drawing for exercise

Open adrawing file called Chapt11 and draw the polyline rectangle shown in figure 11.1. Use the coordinates
shown in the figure to locate the corners.

1. Enter the following expression at the command prompt:
(entget (car (entsdl)))

2. The selection cursor box appears and you get the select object prompt. Pick the polyline you just drew.
The following listing appears.

((-1. <Object name: 60000120>)
(0."POLYLINE")
(8."TEXT")

(66.1) (100.00.00.0)

238

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(70.1) (40.0)

(41.0)

(2100.00.01.0)

(71.0)

(72.0)

(73.0)

(74.0)

(75.0))
We have list the polyline property list vertically for clarity though you will see the list shown as a continuous string
on your text screen. We see the object name, object type and layer listed but where the point group code 10 should
indicate some coordinate location, only zeros are shown. Also, we would expect to see alist of at least four
coordinate values. Instead, we see some somewhat unfamiliar codes from the 40 and 70 group codes, all showing

Zeros.

This doesn't mean that we are unable to access more specific information about polylines. We just need to dig alittle
deeper. The tool we use for digging is the entnext function.

We mentioned that it helps to think of the polyline data as being stored in layers like those of aonion. The listing
above represents the outermost layer. To get to the next layer, you need to use the entnext function.

1. Enter the next expression:

(entget (entnext (car (entsdl))))

2. You will get alisting like the following:
((-1. <Object name: 60000120>)
(0."VERTEX")

(8."0")
(101.01.00.0)
(40 . 0)

(41.0)

(42.0)

239

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(70.0)

(50 . 0))

This new property list gives us some new information. The object name is different from the previouslist. Also,
instead of showing "POLY LINE" as an object type, we get "VERTEX". The layer information is nearly the same
but for the first point value, group code 10, we see the coordinate for the first corner of the box, 1.0 1.0 0.0. For
purposes of our discussion, we'll call this vertex object a polyline sub-object or just sub-object.

Now, we know how to get more detailed information about a polyline by introducing entnext into our expression to
extract an object's sub-object information. We have "peeled off" the first layer of our onion to reveal the next layer

of information. But we only got the first vertex of the polyline. To get the others, you just continue adding more
entnext functions.

1. Enter the following:

(entget (entnext (entnext (car (entsedl)))))
2. When the Select object prompt appears, pick the polyline box. Another new property list appears.

((-1. <Object name: 60000120>)

(0."VERTEX")

(8."0")

(1010.01.00.0)

(40 . 0)

(41.0)

(42.0)

(70. 4)

(50.0))

Now we see alist that describes the second vertex of the polyline. Note the group code 10 value shows a coordinate
10.0 1.0 0.0 which is the next vertex in the polyline.

It would be rather awkward to have to keep expanding our expression by adding more entnext functions to extract
each sub-object's property lists. If we have a polyline that has 40 vertices or more, we would end up with a
enormous program in order to extract all the vertices. Fortunately, we can use arecursive function to get the
property list of each vertex. By using the same variable name to which we assign each vertex object name, we
eliminate the need to add continual nests of the entnext function. Figure 11.2 shows a diagram of how this recursive
function works and figure 11.3: shows a function that uses this recursion to extract alist of polyline vectors. The
Function at the top of the figure, Getvec, is the one we will look at first.

240

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

(setq SubEnt (entnext Entity-name))

¢

=1 Frocess subentity SubEnt

While iteration

t
(setq SubEnt (entnext SubEnt))

(?P @

CD The subentity is found using Entnext. It is then assignedto a
variable SubEnt and processed.

@ Then SubEntis applied to the Entnext function to get the next
subentity name.

@ The wariable SubEnt is assigned the new entity name and the
process is repeated.

Figure 11.2: Using recursion to extract subobject information

241

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;Function to create list of polyline vertices-------------mmmmmm

(defun getver (EntNre / SubEnt VerLst vertex)

(setqg SubEnt (entnext EntNme)) ;get first vertex

(setqg VerLst '()) ;setup vertex list

(whi | e SubEnt
(setq vertex (cdr (assoc 10 (entget SubEnt)))) ;get first vertex point
(setqg VerLst (append VerLst (list vertex))) ;add vertex to verl st
(setqg SubEnt (entnext SubEnt)) ;g0 to next vertex

)

Ver Lst ;return vertex |ist

)

;Function to check if point |lies between endpoints of line---------------------
(defun btwn (a b c)

(setg angl (angle a b)) ;find vertex to point ang.
(setqg ang2 (angle a c)) ;find vertex to vertex ang.
(if (EQUAL (RTGCS angl 2 2) (RTCS ang2 2 2)) b) ;if equal return point.

)

;Programto insert Vertex in sinple polyline

’(defun C. ADDVERT (/ pEnt VerLst Newpt int NewVer ptyp)

(setqg pEnt (entsel "Pick vertex location: ")) ; Get new vertex and pline
(setqg VerLst (getver (car pEnt))) ;extract vertices
(setqg ptyp (assoc 70 (entget (car pEnt))))
(setg Newpt (osnap (cadr pEnt) "nearest")) ; Get new vertex | ocation
(while (cadr VerlLst)
(setg NewVer ;add vertex to new Newer
(append NewVer (list (car VerlLst)))
)
(setq int ; Check for between-ness
(btwn (car VerlLst) newpt (Cadr VerlLst))
(if int i f between, add to NewVer
(setg Newver (append NewMer (list int)))
(setqg VerLst (cdr VerlLst)) ; Renove vertx. fromli st
);end while
(setg Newver (append NewMer (list (car VerLst)))) ;add last vertx. to NewVer
(command "erase" (car pEnt) "") ;erase old pline
(command "pline") ;start pline conmand
(foreach n Newer (conmmand n)) ;insert points from Newer

(if (= (cdr ptyp) 1)
(conmand "cl ose")
(conmand "")
) ;end pline comand

Figure 11.3: Function that implements diagramin figure 11.2

242

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Lets examine this function in detail.

The function takes an object name as an argument. Presumably the object in question is a polyline. It proceedsto
obtain the first vertex object name from that object.

(defun getvec (EntNme/ SubEnt VecL st vector)
(setg SubENt (entnext EntNme))

This vertex object name is assighed to the symbol subEnt. Next, alist is created to hold the vector coordinates:
(setq VecL st ()

The following while expression then goes to each vector property list and extracts the coordinate value. It first
extract the coordinate from the current vertex object:

(while SubEnt
(setq vector (cdr (assoc 10 (entget SubEnt))))
Next, it appends that coordinate value to the vertex list VecL st.
(setg VecL st (append VecL st (list vector)))
finally, the variable SubEnt is assigned the vertex object name of the next vertex and the processis repeated:
(setg SubEnNt (entnext SUbEnt))
)
When all the vertices have been obtained, the list of verticesis returned:
VecL st
)

Now that we know what entnext is capable of, letslook at a practical application. Figure 11.3 includes a program
called Addvect that adds a vertex to a polyline. If you have ever had to add a vertex to a polyline using the
AutoCAD pedit command, you know it can be atrying effort. This program simplifies the operation to one step.
Figure 11.4 gives a graphic description of how this program works.

243

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

b
et the location of the new
vertex and select the polyline.
Old vertex list Create 4 list of the old
polyline vertices.
Add new vertex -

Create anew copy of the
old vertex list and as

! include the new vertex
Mew vertex list inthe new list

// \\ When the new listis done,
erase the old polyline and

draw a new one hased on
the new vertex list.

Figure 11.4: How Addvect work conceptually

Lets seefirst hand how it works.
1. Save and exit the Chapt11 file.
2. Open an AutoL ISP file called Addvert.Isp then copy figure 11.3 into the file. Save and exit Addvert.Isp
3. Return to the Chapt11 drawing file and load addvert.|sp.

4. Enter Addvert at the command prompt. At the prompt:

244

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Pick vertex location:

Pick the square polyline at the coordinate 10,6. The box disappears and a new box is drawn with an
additional vertex at the point you picked.

This program reduces into one step a process than normally takes seven steps through the Pedit command. Lets see
how it worksin detail.

First, an object and a point are gotten using the entsel function:
(defun C:ADDVECT (/ pEnt VecL st Newpt int NewVec type)
(setq pEnt (entsdl " Pick vector location: "))

Asyou may recall, entsel pauses the program's processing and prompts the user to select an object. Once a user
responds, alist of two elementsis returned with the object name and the coordinate used to pick the object.

The next line uses a user defined function, getvec, to create a new list containing only the vertex coordinates from
the polyline object picked. Thislist of verticesis assigned to the variable VecLst.

(setq VecL st (getvec (car pEnt)))

We saw earlier how getvec works. It returns alist of polyline vertices. In the above expression, the list of verticesis
assigned to the VecL st variable.

The next line obtains the associated value of the 70 group code from the polyline. The 70 group code identifies the
type of polylineit is, whether it is closed, curve-fit, spline curved, etc. See Appendix for afull list of the 70 group
code options.

(setq ptyp (assoc 70 (entget (car pEnt))))
thisinformation will be used at the end of the program to determine how the polylineis redrawn.
The next line used the osnap function to establish a point exactly on the polyline.

(setq Newpt (osnap (cadr pEnt) " nearest"))

Here, the coordinate from the entsel function used earlier is applied to the osnap "nearest” function to obtain a new
point. This new point is exactly on the polyline.

Defining a New Polyline

The while expression that follows builds a new list of vertices from which anew polyline will be drawn. Thislist is
actually a copy of the list created by our user defined function Getvec with the new point added in the appropriate
place.

The test expression in the while expression tests to see if the end of the list VecL st has been reached:

245

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
(while (cadr VecL st)

Next, the first element of Veclst isadded to alist called NewVec:
(setqg NewVec
(append NewVec (list (car VecL)))
)
This expression isbasically just copies the first element of the original vertex list to anew list NewVec.
The next set of expressionsteststo seeif our new vertex newpt lies between the first two point of the vertex list:
(setq int
(btwn (car VecL st) newpt (Cadr VecL st))

)

Another user-defined function is used to actually perform the test. This function is called btwn and it tests to seeif
one coordinate lies between two others. If Btwn does find that Newpt lies between the first and second point of
VecL st, then Btwn returns the value of Newpt. Otherwise Btwn returns nil.
If the btwn test function returns a coordinate, the next expression adds the new vertex to the NewVec list.

(ifint

(setqg NewVec (append NewVec (list int)))

)
Finally, the first element of the vertex list is removed and the whole processis repeated.

(setq VecL st (cdr VecL st))

);end while

Once the while loop is done, VecL st isalist of one element. That last element is added to the NewVec list:

(setqg NewVec (append NewVec (list (car VecL st))))

Drawing the new Polyline
The last severa lines erase the old polyline and redraw it using the new vertex list. First the old line is erased:

(command "erase”" (car pEnt) "")

246

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Then the pline command is issued:
(command " pline")

Next, the foreach function is used to input the vertices from the NewVec list to the Pline command:
(foreach n NewVec (command n))

Y ou may recall that foreach is afunction that reads each element from alist and applies that element to avariable.
That variableisthen used in an expression. The expression is evaluated until all the elements of the list have been
evaluated in the expression. In this case, each vertex from the NewVec list is applied to a command function which
supplies the vertex coordinate to the pline command issued in the previous expression.

Once foreach has completed evaluating every element of the NewVec list, the last expression ends the Pline
command:

(if (= (cdr Ptyp) 1)
(command " close")

(command " ")

)
)

Theif conditional expression teststo seeif the polylineis closed or not. If it is, then it enter the word "close” to
close the polyline. If not, then an enter isissued. You may recall that in the first part of the program, the 70 group
code sublist was extracted from the polyline property list. This sublist was assigned to the variable ptyp. Here, ptyp
istested to seeif itscode valueis 1. If it is 1, this means that the polyline is closed thereby causing the if expression
to evaluate the (command "close") expression. If this expression isleft off, the new polyline box would have only
three sides.

Testing for Polyline Types

In the last expression above, you got a glimpse of a special concern when dealing with polylines. There are really
several types of polylines which must all be handled differently. The Addvect program will only function properly
when used on simple polylines made up of line segments. Polylines that are curve-fitted or splined will contain extra
vertices that are not actually part of the drawn polyline. these extra vertices are used as control pointsin defining
curves and splines.

Fortunately, the 70 group codes enable you to determine what type of vertex you are dealing with. In the program
above, we used the 70 group code only to determine whether the polylineis closed or not but other conditions can be
tested for. Y ou could include atest for a spline vertex by comparing the 70 group code value of a vertex to the value
16. If it is 16, the value for a spline frame control point, then you know not to include the vertex in your vertex list.
We won't try to give you examples here as we our spaceis limited. However, you may want to refer to Appendix for
more detail s on the group codes.

247

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

How Arcs are Described in Polylines

Arcsin polylines are described using a bulge factor and two vertices. Y ou can think of the bulge factor asthe
tangent of the angle described by chord of the arc and aline drawn from one end of the arc to the arc's midpoint (see
figure 11.5).

Midpoint of arc.

h
a Tana = bulge factor
u Tana = hfA0Sx cord)
cord bulge factor = h#0.5x cord)

Figure 11.5: The arc bulge factor
From this relationship, the following formulais derived:

bulge=h /0.5 cord = 2h/cord
We can derive the geometry of the arc from these simple relationships. Figure 11.6 shows how we can derive the
arcs angle from the bulge factor. We don't give an example of a program to edit arcsin a polyline. Such atask could
take a chapter in itself since it can be quite involved. Also, you may not find a need for such a capability at this

point. However, should you find a need, we have given you the basics to build your own program to accomplish the
task.

248

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

114 of arc

b midpoint of cord

T center of arc

g angleb = anglea
1 angleb = 1/4of arc angle
angle bx 4 = angle of arc

Figure 11.6: Finding the angle of an arc

Accessing Object Handles and Block Attributes

In the last section, you saw how to extract information from a complex object. Y ou can use the same method to
extract information from block attributes. The program you are about to examine uses block attributes as well as
object handles and externa filesto help assign and store names to objects in your drawing. We will look at how
entnext can be used to get attribute information from a block and how you can use attributes to permanently store
information. Y ou will also explore one possible way of using object handles which are permanent names AutoCAD
can give to objectsin a drawing.

Using Object Handles

We know that every object is given an object name. This name is the key to accessing the object's record in the
drawing database. Unfortunately, this object name changes from editing session to editing session. This means that
during one editing session, an object will have the object name <Object name: 600000d4> while in another session
the same object will have the name <Object name; 60000012>. For the most part, this may not be of concern to you.
But if you want to have away of permanently identifying objects from one editing session to another, you may find
this fact disturbing.

Fortunately, starting with release 10, you can add what is called an object handle to each and every object in your
AutoCAD drawing. Handles are added to the object'sin a drawing by AutoCAD whenever you turn on the handles
function using the handles command. Y ou do not have control over the naming of Objects, AutoCAD automatically
assigns an alpha-numeric name to every object in the drawing.

The handent function in conjunction with other functions can be used to obtain an objects handle from the drawing
249

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

database. The handles are added to an object's property list as a group code 5 property sublist. To get an object's
handle, you use the usual assoc-entget function combination to extract the sublist.

1. Return to the Chapt11 drawing and enter the following at the command prompt:
handles
2. At the prompt:
Handles are disables.
ON/DESTROY:
enter ON. Next enter
(assoc 5(entget(car (entsel))))
3. At the select object prompt, pick the polyline box. Y ou will get alist similar to the following:
(5."29")

The second element of the group 5 property is the object handle. Note that the handle is a numeric value in quotes,
soitisreally astring data type even though it is a number.

Using handles, you could write a simple routine to display an object's handle which you could record somewhere.
Then, you could have another program to retrieve an object based on this handle. We've taken this idea a step further
and have written a program that allows you to assign any name you like to an object and later select that object by

entering the name you have assigned to it. Figure 11.7 shows this program and Figure 11.8 shows a diagram of how
it works.

250

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

;Function to turn a list into a String-----------------mmmmmm

(defun Itos (Ist / gfile strnane)

(setqg gfile (open "acad.grp" "w')) ;open a file on disk
(prinl Ist gfile) ;print list to file
(close dgfile) ;close file

(setqg gfile (open "acad.grp" "r")) ;open file

(setqg strname (read-line gfile)) ;read list fromfile
(close dgfile) ;close file

st rnane ;return converted |ist
)

; Function to obtain nane list stored in attribute-----------------------------
(defun getatt (/ nament)

(setqg nament (ssnane(ssget "X' '((2 . "NAMESTOR')))0)) ;get attribute block

(read (cdr (assoc 1(entget (entnext nanent))))) ;get attribute val ue

)

;Function to clear stored namBsS--------------------momm oo
(defun attclr ()
(setqg nament (ssnane (ssget "X'" '((2 . "NAMESTOR')))0)) ;get attrib. block

(setqg nanmevl (entget (entnext nament))) ;get attrib. ent. list
(setqg nanelt (assoc 1 nanevl)) ;get attrib. value
(entnod (subst (cons 1 "()") nanelt nanevl)) ;add list to attrib

)

;Programto assign a nane to an entity

kdefun C. NAMER (/ group gnane enane snanme nanevl nanelt)

(setqg enane (cdr (assoc 5 (entget (car (entsel "\nPick object: "))))))

(setqg gnane (list (strcase (getstring "\nEnter name of object: "))))

(setqg group (getatt)) ;get nanes fromattrib

(setqg gnane (append gnane (list enane))) :new nanme + ent. nane

(setqg group (append group (list gnane))) ;add nanes to |ist

(setqg snane (ltos group)) ;convert list to strng

(setqg nanmevl (entget (entnext (ssnane (ssget "X' '((2 . "NAMESTOR')))0))))

(setqg nanmelt (assoc 1 nanevl)) ;get attrib. value

(entnod (subst (cons 1 snane) nanmelt nanmevl)) ;add list to attrib

(entupd (cdr (assoc -1 namevl)))

(princ)

)

;Function to select an entity by its name----------------ommmmm
(defun GETNAME (/ group gnane)

(setqg gnane (strcase (getstring "\nEnter name of entity: ")))

(setqg group (getatt)) ;get nanes fromattrib

(handent (cadr (assoc gname group)))

)

Figure 11.7: Program to give names to objects

251

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Entity

zet the entity handle and
the user-supplied name.

AUutoCAD prompt

Enter name of object:

Create alist consisting
of the entity handle and
the user-supplied name.

1

Handle and name list

=

Old attribute value - Get the attribute value from

the block used to store

names and then append the new
list to the attribute value.

Mew attribute value

1 Give the attribute the
news value.

Block with attribute

Figure 11.8: Diagram of a program to name objects

This program makes use of ablock attribute as a storage medium for the names you assign to objects. Letstake a
closer look.

First, you need to define the attribute used for storage.

1. Exit the Chapt11 file and open an AutoL I SP file called Namer.lsp. Copy the program shown in figure
11.7 into your file then save and exit thefile.

252

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
2. Return to the Chapt11 file then load Namer.1sp.

3. Enter attdef to start the attribute definition command.
4. Enter the following responses to the attdef prompts:
Attribute modes -- Invisible:N Constant:N Verify:N Preset:N
Enter (ICVP) to change, RETURN when done:~CR
Attribute tag: name
Attribute name: name
Default attribute value: ()
Start point or Align/Center/Fit/Middle/Right/Style: 2,9
Height (2.0): ~CR

Rotation angle <0>: ~CR

5. The word name will appear in at coordinate 2,9. Now issue the block command and enter the following

responses to the block prompts:

Block name (or ?): namestor

Insert base point: 2,9

select objects: [pick attribute defined in previous step.]
6. Issue the insert command and enter the following responses to the insert prompts:

Block name (or ?): namestor

Insertion point: 2,9

X scalefactor <1>/ Corner / XYZ: ~CR

Y scale factor (default=X): ~CR

Rotation angle <0>: ~CR

Enter attribute values

name <()>: ~CR

Y ou have just defined the attribute within which the program namer will store your object names. Now you are

ready to use the program.

253

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

1. Enter namer at the command prompt. At the prompt:
Pick object:

pick the polyline box.

2. At the next prompt
Enter name of object:

Enter square. The computer will pause for a moment then the command prompt will return. Also, the value
of the attribute you inserted earlier will change to alist containing the name SQUARE and the object
handl e associated with the name. The Namer program uses the attribute as a storage device to store the
name you give the object with its handle.

3. To see that the name square remain associated with the box, exit the chapt11 file using the end command
then open the file again.

4. Load the Namer.lsp file again.

5. Now issue the copy command. At the Select object prompt, enter
(getname)

Y ou will get the prompt
Enter name of object:

Enter square. The box will highlight indicating that it has been selected.

6. At the Base point prompt, pick a point at coordinate 2,2.

7. At the Second point prompt, pick a point at coordinate 3,3.

The box is copied at the displacement 1,1.

The attribute used to store the name could have been made invisible so it doesn't intrude on the drawing. We
intentionally left it visible so you could actively see what is going on.

Namer works by first extracting the object handle of the object selected then creating an association list of the
handle and the name entered by the user. This association list is permanently stored as the value of an attribute. The

attribute value is altered using the entmod function you saw used in the last chapter. Let's take a detailed look at how
namer and getname work.

Using Object Handles

Namer starts by obtaining the object handle of the object the user picks:

(defun C:NAMER (/ group gname ename

254

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

sname nament namevl hamelt)
(setqg ename
(cdr (assoc 5 (entget (car (entsel "\nPick abject: ")))))

)

Here, entsel is used to get the object name of a single object. The car function extracts the name from the value
returned from entsel then entget get the actual object name. At the next level, the assoc function is used to extract the
5 group code sublist from the object. The actual object handle is extracted from the group code using the cdr
function. Thisvalue is assigned to the variable ename.

In the next expression, alist is created containing the name given to the object by the user:
(setq gname
(list (strcase (getstring " \nEnter name of object: ")))

)

The user is prompted to enter a name. this name is converted to all upper case letters using the strcase function. Then
it is converted into alist using the list function. finally, the list is assigned to the variable gname.

The next expression calls a user defined function called getatt:
(setq group (getatt))

This function extracts the attribute value from a the block named namestor. Y ou may recall that the default attribute
value of namestor was " ()". Getatt extracts this value and the above expression assigns the value to the variable
group. Well look at how getatt works alittle later.

Next, the object handle is appended to the list containing the name the user entered as the name for the object. This
appended list is then appended to the list named gr oup which was obtained from the attribute.

(setq gname (append gname (list ename)))
(setq group (append group (list gname)))

The variable group is the association list to which user defined object name are stored. It isthe samelist you seein
the block attribute you inserted earlier.

The next line converts the list group into a string data type using a user defined function called Itos:
(setq sname (Itos group))
Ltos simply write the list represented by the symbol group to an external file then reads it back. The net affect isthe

conversion of alist into astring. Thisis done so the value of group can be used to replace the current value of the
attribute in the namestor block. This is a situation where data type consideration is important.

255

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Attribute values cannot be anything other than strings so if our program were to try to substitute alist in place of a
string, an error would occur.

Extracting Attribute Data

The next several lines obtain the property list of the namestor block attribute and its attribute value in preparation
for entmod:

(setq namevl (entget
(entnext (ssname (ssget " X" '((2. "NAMESTOR")))0)))

)

Here, the ssget " X" filter is used to select a specific object, namely the block named "NAMESTOR". In this
situation, since the name of the block is a fixed value, we include the name as a permanent of the expression:

(ssget " X" '((2."NAMESTORE")))
This helps us keep track of what block we are using and also reduces the number of variables we need to use.
Once the block is found by ssget, ssname gets the blocks' object name and entnext extracts the attributes' object
name. Entget extracts the attributes property list which is assigned to the namevl variable. The line that follows uses
the assoc function to extract the actual attribute value.

(setq namelt (assoc 1 namevl))

Figure 11.9 shows how this works.

Block "MAMESTOR" with attribute

in drawing database.

(entget (entnext (ssname (ssget "X" '((2 . "NAMESTOR")) 0)))
|

=5Salection set 1=

entity 0
| =Entity name: GO000030=
|_<Entity name: 60000042>

Froperty list

(-1 . <Entity name: 60000042=) (0 . "ATTRIB"}
(8 ."0" (10434848 584609 0.0) (40 . 0.2)
(1."0" (2 "NAMES") (TO . 1373 . 0)

(50 . 0.0) (41 10351 . 00) (7 . "STANDARD")
(1. 00 (72 .00 (1M000000)(2100.00.01.0}%)

Figure 11.9: Extracting an attribute value
256

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Just as we used entnext to extract the vertices of a polyline, you can use entnext to obtain the attribute information
from ablock. If there is more than one attribute in a block, you step through the attributes the same way you step
through the vertices of a polyline. The Getatt function works in a similar way to these expressions you have just
examined.

Finally, entmod is used to update the attribute to store the association list of the object name and object handle:
(entmod (subst (cons 1 sname) namelt namevl))
(entupd (cdr (assoc -1 namevl)))
(princ)
)

The subst function is used to substitute the newly appended name with the old attribute value in the attributes
property list. Then entmod updates the drawing database with the updated property list. The entupd function is used
to update the display of the attribute in the block. Entupd is only needed where attributes and curve-fitted polylines
are being edited and you don't want to regenerate the entire drawing to update the display. Y ou could think of it asa
regen for specific objects.

The getname function is actually quite simple compared with namer.
(defun GETNAME (/ group gname getname handl nament newent)
(setqg gname (strcase (getstring " \nEnter name of object: ")))
(setq group (getatt))

(handent (cadr (assoc gname group)))

)

Getname prompts the user for the name of the object to be selected. It then obtains the association list of name from
the storing attribute using the user defined Getatt function. Finally, gethame extracts the object handle from the
association list using the name entered by the use as the key-value. The handent function returns the object name of
the object whose handle it receives as an argument.

Namer and getname are fairly crude program as they have very little in the way of error checking. For example, if
while using the getname function, you enter a name that does not exit, you get an AutoL ISP error message. Also, if
you attempt to save more than dozen names, you will get the out of string space error message. Thisis dueto the
100 character limit AutoL ISP places on string data types. There is also no facility to check for duplicate user
supplied names. We wanted to keep the program simple so you won't get too confused by extra code. Y ou may want
to try adding some error checking features yourself, or if you feel confident, you can try to find a way to overcome
the 100 character limit.

257

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura
Conclusion

Programming can be the most frustration experience you have ever encountered as well as an enormous time waster.
But it is also one of the most rewarding experiences using a computer can offer. And once you master AutoL ISP,
you will actually begin to save time in your daily use of AutoCAD. But to get to that point, you must practice and
become as familiar as possible with AutoL1SP. The more familiar you are with it, the easier it will be to use and the
quicker you will be able to write programs.

We hope this tutorial has been of value to your programming efforts and it will continue to be helpful to you asa
reference when you are stuck with a problem. Though we didn't cover every AutoLISP function in detail, In
particular, we did not cover binary operations and a few other math functions. We did cover the mgjor functions and
you were able to see how those functions are used within programs solving real world problems. Y ou were
introduced to the program in a natural progression from entering your first expression through the keyboard to
designing and debugging programs and finally to accessing the AutoCAD drawing database.

258

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Appendix A: Menu Primer

You can find comprehensive information on AutoCAD Menusin the AutoCAD help system.
Hereareinstructionsfor finding the section devoted to Menus.

1. In AutoCAD, choose Help > Developer Help from the menubar

2. Click on the Contents tab in the Help Topics dialog box, then expand the Customization Guide listing
3. Expand the Custom Menus listing. Y OU will see the list of topics. Click on the topic of your choice.

Y ou can also refer to Chapter 29 of Mastering AutoCAD for tutorials on menu customization.

259

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Appendix B: Error Messages

Error codes have been completely retooled in AutoCAD 2002. AutoCAD 2002 now offers
Visual L1SP which isa programming environment designed for AutoL1SP. There, you'll find
an environment that helps you find errors quickly, You can open Visual L1SP by choosing
Tools> AutoL ISP > Visual LISP Editor. The Visual LISP Editor offers many of the tools you
expect to find in a modern programming environment.

A discussion of Visual LI1SP isnot currently available in this document. You can find a
tutorial and reference guide built into Visual L1SP by choosing Help > Developer List. Click
on the Contentstab to see a listing of topicsincluding Visual L1SP Developer’s Guide and
Visual LISP Tutorial.

Visual LISP isan advanced tool that expects the user to have a working knowledge of
AutoL | SP. You may want to work with the ABC's of AutoL ISP until you feel comfortable with
AutoL | SP.

260

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Appendix C: Group Codes

You can find a comprehensive listing of group codes in the AutoCAD help system. Here are
instructions for finding the group codes.

1. In AutoCAD, choose Help > Developer Help from the menubar
2. Click on the Contents tab of the Help Topics dialog box, then expand the DXF Reference listing

Y ou can then expand the other options under DXF Reference for group codes pertaining to the selected
topic.

261

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

Appendix D: System and Dimension
Variables

You can find a comprehensive listing of dimension variablesin the AutoCAD help system.
Hereareinstructionsfor finding the dimension variables information.

1. In AutoCAD, choose Help > Help from the menubar
2. Click on the Contents tab in the Help dialog box then expand the Command Reference listing
3. Expand the System Variables listing

You will seealisting of system variables with a brief description to the right. Y ou can click on the system
variable name to get a more detailed description.

262

Copyright © 2001 George Omura,,World rights reserved

The ABC’s of AutoL ISP by George Omura

263

Copyright © 2001 George Omura,,World rights reserved

	The ABC's of AutoLISP
	Introduction
	 Who should read this book
	 How This Book Is Organized
	 How to Use This Book
	 Where to Find the LISP Programs
	CHAPTER 1: Introducing AutoLISP
	 Understanding the Interpreter and Evaluation
	 The Components of an Expression
	 Using Arguments and Expressions
	 Using Variables
	 Understanding Data Types
	 Integers and Real Numbers
	 Strings
	 Lists
	 File Descriptors
	 Object Names
	 Selection Sets
	 Symbols
	 Subrs
	 Atoms
	 Assigning Values to Variables with Setq
	 Preventing Evaluation of Arguments
	 Applying Variables
	 Assessing Single Elements of a List
	 Functions for Assigning Values to Variables
	 Adding Prompts
	CHAPTER 2: Storing and Running Programs
	 Creating an AutoLISP Program
	 What you Need
	 Creating an AutoLISP File
	 Loading an AutoLISP file
	 Running a Loaded Program
	 Understanding How a Program Works
	 Using AutoCAD Commands in AutoLISP
	 How to Create a Program
	 Local and Global Variables
	 Automatic Loading of Programs
	 Managing Large Acad.lsp files
	 Using AutoLISP in a Menu
	 Using Script Files
	CHAPTER 3: Organizing a Program
	 Looking at a Programs Design
	 Outlining Your Programming Project
	 Using Functions
	 Adding a Function
	 Reusing Functions
	 Creating an 3D Box program
	 Creating a 3D Wedge Program
	 Making Your Code More Readable
	 Using Prettyprint
	 Using Comments
	 Using Capitals and Lower Case Letters
	 Dynamic Scoping
	CHAPTER 4: Interacting with the Drawing Editor
	 Prompting the User for Distance
	 A Sample Program Using Getdist
	 How to Get Angle Values
	 Using Getangle and Getorient
	 How to Get Text Input
	 Using Getstring
	 Using Getkword
	 How to Get Numeric Values
	 Using Getreal and Getint
	 How to Control User Input
	 Using Initget
	 Prompting for Dissimilar Variable Types
	 Using Multiple Keywords
	 How to Select Groups of Objects
	 Using Ssget
	 A Sample Program Using Ssget
	CHAPTER 5: Making Decisions with AutoLISP
	 Making Decisions
	 How to Test for Conditions
	 Using the If function
	 How to Make Several Expressions Act like One
	 How to Test Multiple Conditions
	 Using the Cond function
	 How to Repeat parts of a Program
	 Using the While Function
	 Using the Repeat Function
	 Using Test Expressions
	CHAPTER 6: Working With Geometry
	 How to find Angles and Distances
	 Understanding the Angle, Distance, and Polar Functions
	 Using Trigonometry to Solve a Problem
	 Gathering Information
	 Finding Points Using Trigonometry
	 Functions Useful in Geometric Transformations
	 Trans
	 Atan
	 Inters
	 Sin
	 Cos
	CHAPTER 7: Working with Text
	 Working With String Data Types
	 Searching for Strings
	 How to Convert Numbers to Strings and Back
	 Converting a Number to a String
	 How to read ASCII text files
	 Using a File Import Program
	 Writing ASCII Files to Disk
	 Using a Text Export Program
	CHAPTER 8: Interacting with AutoLISP
	 Reading and Writing to the Screen
	 Reading the Cursor Dynamically
	 Writing Text to the Status and Menu Areas
	 Calling Menus from AutoLISP
	 Drawing Temporary Images on the Drawing Area
	 Using Defaults in a Program
	 Adding Default Responses to your Program
	 Dealing with Aborted Functions
	 Using the *error* Function
	 Organizing Code to Reduce Errors
	 Debugging Programs
	 Common Programming Errors
	 Using Variables as Debugging Tools
	CHAPTER 9: Using Lists to store data
	 Getting Data from a List
	 Using Simple Lists for Data Storage
	 Evaluating Data from an Entire List at Once
	 Using Complex Lists to Store Data
	 Using Lists for Comparisons
	 Locating Elements in a List
	 Searching Through Lists
	 Finding the Properties of AutoCAD Objects
	 Using Selection Sets and Object Names
	 Understanding the structure of Property Lists
	 Changing the properties of AutoCAD objects
	 Getting an Object Name and Coordinate Together
	CHAPTER 10: Editing AutoCAD objects
	 Editing Multiple objects
	 Improving Processing Speed
	 Using Cmdecho to Speed up Your Program
	 Improving Speed Through Direct Database Access
	 Filtering Objects for Specific Properties
	 Filtering a Selection Set
	 Selecting Objects Based on Properties
	 Accessing AutoCAD's System Tables
	CHAPTER 11: Accessing Complex Objects
	 Accessing Polyline Vertices
	 Defining a New Polyline
	 Drawing the new Polyline
	 Testing for Polyline Types
	 How Arcs are Described in Polylines
	 Accessing Object Handles and Block Attributes
	 Using Object Handles
	 Using Object Handles
	 Extracting Attribute Data
	Appendix A: Menu Primer
	Appendix B: Error Messages
	Appendix C: Group Codes
	Appendix D: System and Dimension Variables

